Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease

被引:8
|
作者
Wegrzyn, Agnieszka B. [1 ,2 ]
Herzog, Katharina [3 ,4 ]
Gerding, Albert [1 ,5 ]
Kwiatkowski, Marcel [6 ,7 ]
Wolters, Justina C. [8 ]
Dolga, Amalia M. [9 ]
van Lint, Alida E. M. [3 ]
Wanders, Ronald J. A. [3 ]
Waterham, Hans R. [3 ]
Bakker, Barbara M. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Lab Paediat, Syst Med Metab & Signalling, Postbus 196, NL-9700 AD Groningen, Netherlands
[2] Leiden Univ, Leiden Acad Ctr Drug Res, Div Syst Biomed & Pharmacol, Analyt Biosci & Metabol, Leiden, Netherlands
[3] Univ Amsterdam, Dept Clin Chem, Lab Genet Metab Dis, Amsterdam UMC,Locat AMC, Amsterdam, Netherlands
[4] Lund Univ, Ctr Anal & Synth, Dept Chem, Lund, Sweden
[5] Univ Groningen, Univ Med Ctr Groningen, Dept Lab Med, Groningen, Netherlands
[6] Univ Groningen, Groningen Res Inst Pharm Grip, Pharmacokinet Toxicol & Targeting, Groningen, Netherlands
[7] Univ Innsbruck, Inst Biochem, Mass Spectrometr Prote & Metabol, Innsbruck, Austria
[8] Univ Groningen, Univ Med Ctr Groningen, Lab Paediat, Groningen, Netherlands
[9] Univ Groningen, Groningen Res Inst Pharm, Dept Mol Pharmacol, Groningen, Netherlands
关键词
amino acids; fibroblast; genome-scale modelling; metabolism; Refsum disease; PHYTANIC ACID; INBORN-ERRORS; LIVER-METABOLISM; OMEGA-OXIDATION; DISORDERS; DIPEPTIDE; RECONSTRUCTION; IDENTIFICATION; CHROMATOGRAPHY; PEPTIDES;
D O I
10.1111/febs.15292
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Refsum disease (RD) is an inborn error of metabolism that is characterised by a defect in peroxisomal alpha-oxidation of the branched-chain fatty acid phytanic acid. The disorder presents with late-onset progressive retinitis pigmentosa and polyneuropathy and can be diagnosed biochemically by elevated levels of phytanate in plasma and tissues of patients. To date, no cure exists for RD, but phytanate levels in patients can be reduced by plasmapheresis and a strict diet. In this study, we reconstructed a fibroblast-specific genome-scale model based on the recently published, FAD-curated model, based on Recon3D reconstruction. We used transcriptomics (available via GEO database with identifier ), metabolomics and proteomics (available via ProteomeXchange with identifier PXD015518) data, which we obtained from healthy controls and RD patient fibroblasts incubated with phytol, a precursor of phytanic acid. Our model correctly represents the metabolism of phytanate and displays fibroblast-specific metabolic functions. Using this model, we investigated the metabolic phenotype of RD at the genome scale, and we studied the effect of phytanate on cell metabolism. We identified 53 metabolites that were predicted to discriminate between healthy and RD patients, several of which with a link to amino acid metabolism. Ultimately, these insights in metabolic changes may provide leads for pathophysiology and therapy. Databases Transcriptomics data are available via GEO database with identifier , and proteomics data are available via ProteomeXchange with identifier PXD015518.
引用
收藏
页码:5096 / 5113
页数:18
相关论文
共 39 条
  • [1] Genome-scale modelling of microbial metabolism with temporal and spatial resolution
    Henson, Michael A.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2015, 43 : 1164 - 1171
  • [2] Genome-scale metabolic modelling common cofactors metabolism in microorganisms
    Xu, Nan
    Ye, Chao
    Chen, Xiulai
    Liu, Jia
    Liu, Liming
    JOURNAL OF BIOTECHNOLOGY, 2017, 251 : 1 - 13
  • [3] Secondary metabolism of Aspergillus terreus in the context of genome-scale network modelling
    Boruta, Tomasz
    Bizukojc, Marcin
    NEW BIOTECHNOLOGY, 2016, 33 : S207 - S207
  • [4] Genome-scale metabolic modelling predicts biomarkers and therapeutic targets for neuropsychiatric disorders
    Moolamalla, S. T. R.
    Vinod, P. K.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 125
  • [5] Genome-scale Metabolic Modelling for Succinic Acid Production in Escherichia coli
    Mienda, Bashir Sajo
    CURRENT METABOLOMICS, 2018, 6 (03) : 170 - 175
  • [6] Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576
    Norena-Caro, Daniel A.
    Zuniga, Cristal
    Pete, Amber J.
    Saemundsson, Sven A.
    Donaldson, Morgan R.
    Adams, Alexandria J.
    Dooley, Kerry M.
    Zengler, Karsten
    Benton, Michael G.
    BIOCHEMICAL ENGINEERING JOURNAL, 2021, 171
  • [7] A Genome-Scale Metabolic Model Accurately Predicts Fluxes in Central Carbon Metabolism under Stress Conditions
    Williams, Thomas C. R.
    Poolman, Mark G.
    Howden, Andrew J. M.
    Schwarzlander, Markus
    Fell, David A.
    Ratcliffe, R. George
    Sweetlove, Lee J.
    PLANT PHYSIOLOGY, 2010, 154 (01) : 311 - 323
  • [8] Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling
    Garcia-Romero, Inmaculada
    Nogales, Juan
    Diaz, Eduardo
    Santero, Eduardo
    Floriano, Belen
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling
    Inmaculada García-Romero
    Juan Nogales
    Eduardo Díaz
    Eduardo Santero
    Belén Floriano
    Scientific Reports, 10
  • [10] Patient-Specific Genome-Scale Metabolic Models for Individualized Predictions of Liver Disease
    Manchel, Alexandra
    Hoek, Jan B.
    Bataller, Ramon
    Mahadevan, Radhakrishnan
    Vadigepalli, Rajanikanth
    IFAC PAPERSONLINE, 2022, 55 (23): : 148 - 149