On Proximal Relations in Transformation Semigroups Arising from Generalized Shifts

被引:0
|
作者
Zadeh Shirazi, Fatemah Ayatollah [1 ]
Fallahpour, Amir [2 ]
Mardanbeigi, Mohammad Reza [3 ]
Ahmadabadi, Zahra Nili [3 ]
机构
[1] Univ Tehran, Coll Sci, Fac Math Stat & Comp Sci, Enghelab Ave, Tehran, Iran
[2] Amirkabir Univ Technol, Coll Sci, Fac Math & Comp Sci, Tehran, Iran
[3] Islamic Azad Univ, Sci & Res Branch Tehran, Tehran, Iran
来源
ANALYSIS IN THEORY AND APPLICATIONS | 2022年 / 38卷 / 01期
关键词
Generalized shift; proximal relation; transformation semigroup;
D O I
10.4208/ata.OA-2017-0063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a finite discrete topological space X with at least two elements, a nonempty set F, and a map phi : Gamma -> Gamma, sigma(phi), : X-Gamma -> X-Gamma with sigma(phi)((x(alpha))(alpha subset of Gamma)) = (x(phi)(alpha))alpha subset of Gamma (for (x,),(alpha is an element of Gamma) is an element of X-Gamma) is a generalized shift. In this text for S = {sigma(psi) : psi is an element of Gamma(Gamma)} and = {crip : F F is bijective} we study proximal relations of transformation semigroups (S, X-Gamma) and (1-1, X-Gamma). Regarding proximal relation we prove: P (S, X1) = {((x,),(alpha subset of Gamma), (y,)(alpha subset of Gamma)) (alpha subset of Gamma) x Gamma(Gamma) : J3 E F (Gamma(Gamma) = Gamma(Gamma))} and P(H, X-Gamma) C {((x0,1, 0, (yo,)(alpha subset of Gamma)) E Xr x Xr : {p E F : xo = yp} is infinite} U {(x,x) : x is an element of X-Gamma}. Moreover, for infinite F, both transformation semigroups (S, X-Gamma) and (H1, X-Gamma) are regionally proximal, i.e., Q(S, = = Xr x XI', also for sydetically proximal relation we have LP-1, = {((x,)(alpha subset of Gamma) (y(alpha))(alpha subset of Gamma) is an element of X-Gamma x X-Gamma : {gamma is an element of Gamma : x gamma not equal y gamma}is finite}.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 50 条