Machine learning and semantic information for unstructured healthcare data: Comparison of methods through the automatic analysis of adverse drug reaction reports. MAI TAI study

被引:0
|
作者
Letinier, L. [1 ]
Jouganous, J. [2 ]
Miremont, G. [1 ]
Bel-Letoile, A. [2 ]
Salvo, F. [1 ]
Rouby, F. [3 ]
Micallef, J. [3 ]
Benkebil, M. [4 ]
Pariente, A. [1 ]
机构
[1] CHU Bordeaux, Bordeaux Populat Hlth Res Ctr, Ctr Reg Pharmacovigilance,Serv Pharmacol Med,UMR, Inserm,Bordeaux Populat Hlth Res Ctr,Team Pharmac, Bordeaux, France
[2] Synapse Med, Bordeaux, France
[3] Assistance Publ Hop Marseille, CRPV Marseille Provence Corse, Serv Hosp Univ Pharmacol Clin & Pharmacovigilance, Marseille, France
[4] Agence Natl Secur Medicament & Prod Sante ANSM, Surveillance Div, St Denis, France
关键词
pharmacovigilance; adverse drug reaction report; artificial intelligence; machine learning;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
CO-011
引用
收藏
页码:20 / 20
页数:1
相关论文
共 1 条
  • [1] Machine learning and semantic information for unstructured healthcare data: Comparison of methods through the automatic analysis of adverse drug reaction reports
    Letinier, Louis
    Jouganous, Julien
    Miremont, Ghada
    Bel-Letoile, Alicia
    Salvo, Francesco
    Rouby, Franck
    Micallef, Joelle
    Benkebil, Mehdi
    Pariente, Antoine
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 328 - 328