Middle convolution and Harnad duality

被引:12
|
作者
Yamakawa, Daisuke [1 ]
机构
[1] Ecole Polytech, CNRS UMR 7640, ANR SEDIGA, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
关键词
ISOSPECTRAL HAMILTONIAN FLOWS; DIFFERENTIAL-EQUATIONS; MOMENT MAPS; INFINITE DIMENSIONS; REPRESENTATIONS; SYSTEMS; CONSTRUCTION; PAINLEVE; FINITE; REDUCTION;
D O I
10.1007/s00208-010-0517-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dettweiler-Reiter's additive description of Katz's middle convolution can be interpreted in terms of the Harnad duality. Using this interpretation together with Mumford's geometric invariant theory, we generalize the additive middle convolution to have a multi-parameter and act on systems of linear ordinary differential equations with irregular singularities. We show that the generalized operation holds basic properties of the original one, and additionally, show that Katz's algorithm involving our generalization works well in generic case.
引用
收藏
页码:215 / 262
页数:48
相关论文
共 50 条
  • [1] Middle convolution and Harnad duality
    Daisuke Yamakawa
    Mathematische Annalen, 2011, 349 : 215 - 262
  • [2] Middle Convolution
    Haraoka, Yoshishige
    LINEAR DIFFERENTIAL EQUATIONS IN THE COMPLEX DOMAIN: FROM CLASSICAL THEORY TO FOREFRONT, 2020, 2271 : 365 - 380
  • [3] TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES
    Booker, Thomas
    Street, Ross
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 166 - 205
  • [4] INFIMAL CONVOLUTION AND DUALITY IN CONVEX MATHEMATICAL PROGRAMMING
    Mahmudov, Elimhan N.
    Mardanov, Misir J.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (01): : 50 - 62
  • [5] LINEAR KOSZUL DUALITY AND FOURIER TRANSFORM FOR CONVOLUTION ALGEBRAS
    Mirkovic, Ivan
    Riche, Simon
    DOCUMENTA MATHEMATICA, 2015, 20 : 989 - 1038
  • [6] Middle convolution: Dependence on parameters
    RIGID LOCAL SYSTEMS, 1996, (139): : 111 - 119
  • [7] Painleve' equations and the middle convolution
    Dettweiler, Michael
    Reiter, Stefan
    ADVANCES IN GEOMETRY, 2007, 7 (03) : 317 - 330
  • [8] Chapter 4: Middle convolution
    TWISTED L-FUNCTIONS AND MONODROMY, 2002, (150): : 79 - 83
  • [9] Middle convolution and Galois realizations
    Dettweiler, M
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 143 - 158
  • [10] Middle convolution and the hypergeometric equation
    Filipuk, G. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (17)