Estimates for solutions of fully nonlinear discrete schemes

被引:0
|
作者
Kuo, HJ [1 ]
Trudinger, NS [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe some estimates for solutions of nonlinear discrete schemes, which are analogues of fundamental estimates of Krylov and Safonov for linear elliptic partial differential equations and the resultant Schauder estimates for nonlinear elliptic equations of Evans, Krylov and Safonov.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 50 条
  • [1] STABILITY AND ERROR ESTIMATES OF FULLY DISCRETE SCHEMES FOR THE BRUSSELATOR SYSTEM
    Chrysafinos, Konstantinos
    Karatzas, Efthymios N.
    Kostas, Dimitrios
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 828 - 853
  • [2] UNIFORM DISCRETE SOBOLEV ESTIMATES OF SOLUTIONS TO FINITE DIFFERENCE SCHEMES FOR SINGULAR LIMITS OF NONLINEAR PDES
    Mandel, Liat Even-Dar
    Schochet, Steven
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 727 - 757
  • [3] FULLY DISCRETE GALERKIN SCHEMES FOR THE NONLINEAR AND NONLOCAL HARTREE EQUATION
    Aschbacher, Walter H.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [4] A posteriori error estimates for fully discrete nonlinear parabolic problems
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (35-36) : 3462 - 3474
  • [5] A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem
    Baensch, E.
    Karakatsani, F.
    Makridakis, C. G.
    CALCOLO, 2018, 55 (02)
  • [6] A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem
    E. Bänsch
    F. Karakatsani
    C. G. Makridakis
    Calcolo, 2018, 55
  • [7] A priori estimates for classical solutions of fully nonlinear elliptic equations
    CAO Yi1
    2Department of Mathematics
    Science China(Mathematics), 2011, 54 (03) : 457 - 462
  • [8] A priori estimates for classical solutions of fully nonlinear elliptic equations
    Cao Yi
    Li DongSheng
    Wang LiHe
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 457 - 462
  • [9] A priori estimates for solutions of fully nonlinear special Lagrangian equations
    Yuan, Y
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (02): : 261 - 270
  • [10] A priori estimates for classical solutions of fully nonlinear elliptic equations
    Yi Cao
    DongSheng Li
    LiHe Wang
    Science China Mathematics, 2011, 54 : 457 - 462