A parton branching with transverse momentum dependent splitting functions

被引:5
|
作者
Hautmann, F. [1 ,2 ,3 ]
Hentschinski, M. [4 ]
Keersmaekers, L. [1 ]
Kusina, A. [5 ]
Kutak, K. [5 ]
Lelek, A. [1 ]
机构
[1] Univ Antwerp, Elementaire Deeltjes Fys, B-2020 Antwerp, Belgium
[2] CERN, Theory Dept, CH-1211 Geneva, Switzerland
[3] Univ Oxford, Theoret Phys Dept, Oxford OX1 3PU, England
[4] Univ Americas Puebla, Cholula 72820, Mexico
[5] Polish Acad Sci, Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland
关键词
HIGH-ENERGY FACTORIZATION; POMERANCHUK SINGULARITY; SCATTERING;
D O I
10.1016/j.physletb.2022.137276
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Off-shell, transverse-momentum dependent splitting functions can be defined from the high-energy limit of partonic decay amplitudes. Based on these splitting functions, we construct Sudakov form factors and formulate a new parton branching algorithm. We present a first Monte Carlo implementation of the algorithm. We use the numerical results to verify explicitly momentum sum rules for TMD parton distributions. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A PARTON BRANCHING ALGORITHM WITH TRANSVERSE-MOMENTUM-DEPENDENT SPLITTING FUNCTIONS
    Lelek, Aleksandra
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2023, 16 (05) : 5A461 - 5A467
  • [2] Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution
    Aybat, S. Mert
    Rogers, Ted C.
    PHYSICAL REVIEW D, 2011, 83 (11):
  • [3] Equality of two definitions for transverse momentum dependent parton distribution functions
    Collins, John
    Rogers, Ted
    PHYSICAL REVIEW D, 2013, 87 (03):
  • [4] TRANSVERSE MOMENTUM DEPENDENT (TMD) PARTON DISTRIBUTION FUNCTIONS: STATUS AND PROSPECTS
    Angeles-Martinez, R.
    Bacchetta, A.
    Balitsky, I. I.
    Boer, D.
    Boglione, M.
    Boussarie, R.
    Ceccopieri, F. A.
    Cherednikov, I. O.
    Connor, P.
    Echevarria, M. G.
    Ferrera, G.
    Luyando, J. Grados
    Hautmann, F.
    Jung, H.
    Kasemets, T.
    Kutak, K.
    Lansberg, J. P.
    Lelek, A.
    Lykasov, G.
    Martinez, J. D. Madrigal
    Mulders, P. J.
    Nocera, E. R.
    Petreska, E.
    Pisano, C.
    Placakyte, R.
    Radescu, V.
    Radici, M.
    Schnell, G.
    Scimemi, I.
    Signori, A.
    Szymanowski, L.
    Monfared, S. Taheri
    Van der Veken, F. F.
    van Haevermaet, H. J.
    Van Mechelen, P.
    Vladimirov, A. A.
    Wallon, S.
    ACTA PHYSICA POLONICA B, 2015, 46 (12): : 2501 - 2534
  • [5] Transverse momentum dependent parton quasidistributions
    Ji, Xiangdong
    Jin, Lu-Chang
    Yuan, Feng
    Zhang, Jian-Hui
    Zhao, Yong
    PHYSICAL REVIEW D, 2019, 99 (11)
  • [6] Non-universality of transverse momentum dependent parton distribution functions
    Bomhof, C. J.
    Mulders, P. J.
    NUCLEAR PHYSICS B, 2008, 795 (1-2) : 409 - 427
  • [7] Soft and collinear factorization and transverse momentum dependent parton distribution functions
    Echevarria, Miguel G.
    Idilbi, Ahmad
    Scimemi, Ignazio
    PHYSICS LETTERS B, 2013, 726 (4-5) : 795 - 801
  • [8] Relation between transverse momentum dependent distribution functions and parton distribution functions in the covariant parton model approach
    Efremov, A. V.
    Schweitzer, P.
    Teryaev, O. V.
    Zavada, P.
    PHYSICAL REVIEW D, 2011, 83 (05):
  • [9] The role of angular ordering condition in Parton Branching transverse momentum dependent (TMD) PDFs and DY transverse momentum spectrum at LHC
    Lelek, Aleksandra
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,
  • [10] Transverse momentum dependent splitting functions at work: Quark-to-gluon splitting
    Hentschinski, M.
    Kusina, A.
    Kutak, K.
    PHYSICAL REVIEW D, 2016, 94 (11)