共 50 条
Dual inhibition of EGFR and MET by Echinatin retards cell growth and induces apoptosis of lung cancer cells sensitive or resistant to gefitinib
被引:24
|作者:
Oh, Ha-Na
[1
]
Lee, Mee-Hyun
[2
,3
]
Kim, Eunae
[4
]
Kwak, Ah-Won
[1
]
Seo, Ji-Hye
[5
,6
]
Yoon, Goo
[1
]
Cho, Seung-Sik
[1
,7
]
Choi, Joon-Seok
[7
]
Lee, Sang-Myeong
[8
]
Seo, Kang-Seok
[9
]
Chae, Jung-Il
[5
,6
]
Shim, Jung-Hyun
[1
,2
]
机构:
[1] Mokpo Natl Univ, Dept Pharm, 1666 Yeongsan Ro, Jeonnam 58554, South Korea
[2] China US Henan Hormel Canc Inst, Zhengzhou 450008, Henan, Peoples R China
[3] Zhengzhou Univ, Basic Med Coll, Zhengzhou 450001, Henan, Peoples R China
[4] Chosun Univ, Coll Pharm, Gwangju 61452, South Korea
[5] Jeonbuk Natl Univ, Dept Dent Pharmacol, Sch Dent, Jeonju 54896, South Korea
[6] Jeonbuk Natl Univ, Inst Oral Biosci, BK21 Plus, Jeonju 54896, South Korea
[7] Daegu Catholic Univ, Coll Pharm, Gyeongbuk 38430, South Korea
[8] Jeonbuk Natl Univ, Div Biotechnol, Coll Environm & Bioresources, Iksan 54596, South Korea
[9] Sunchon Natl Univ, Dept Anim Sci & Technol, Sunchon 57922, South Korea
基金:
新加坡国家研究基金会;
关键词:
Echinatin;
EGFR;
MET;
Non-small cell lung cancer;
Apoptosis;
ENDOPLASMIC-RETICULUM STRESS;
LICORICE;
TARGETS;
UPDATE;
CYCLE;
D O I:
10.1002/ptr.6530
中图分类号:
R914 [药物化学];
学科分类号:
100701 ;
摘要:
Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.
引用
下载
收藏
页码:388 / 400
页数:13
相关论文