Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 4. Platinum group element distribution in the ores, and genetic implications

被引:30
|
作者
Barnes, SJ [1 ]
机构
[1] CSIRO Explorat & Min, Australian Resources Res Ctr, Bentley, WA 6102, Australia
关键词
platinum; iridium; sulfide; nickel; komatiite;
D O I
10.1007/s00126-004-0440-1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Black Swan komatiite sequence, in the Eastern Goldfields province of the Archaean Yilgarn Craton in Western Australia, is a body of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. The massive sulfide orebodies of the Black Swan Succession are pervasively depleted in all platinum group elements (PGEs), particularly Pt and Pd, despite very high Ni contents. This depletion cannot be explained by R-factor variations, which would also require relatively low Ni tenors. The PGE depletion could be explained in part if the ores are enriched in a monosulfide solid solution (MSS) cumulate component, but requires some additional fractional segregation of sulfide melt upstream from the site of deposition. The Silver Swan orebody shows a remarkably consistent vertical zonation in PGE contents, particularly in Ir, Ru, Rh, Os, which increase systematically from very low levels at the stratigraphic base of the sulfide body to maxima corresponding roughly with the top of a lower layer of the orebody rich in silicate inclusions. Platinum shows the opposite trend, but is somewhat modified by remobilisation during tale carbonate alteration. A similar pattern is also observed in the adjacent White Swan orebody. This zonation is interpreted and modelled as the result of fractional crystallisation of MSS from the molten sulfide pool. The strong IPGE depletion towards the base of the orebody may be a consequence of sulfide liquid crystallisation in an inverted thermal gradient, between a thin rapidly cooling upper rind of komatiite lava and a hot substrate.
引用
收藏
页码:752 / 765
页数:14
相关论文
共 12 条