Lorerift-covariant non-Abelian gauging of a supermembrane

被引:1
|
作者
Nishino, Hitoshi [1 ]
Rajpoot, Subhash [1 ]
机构
[1] Calif State Univ Long Beach, Dept Phys & Astron, Long Beach, CA 90840 USA
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.77.106002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform the Lorentz-covariant non-Abelian gauging of a supermembrane (M-2 brane) action. This is a generalization of our previous work based on the teleparallel formulation, in which Lorentz covariance was not manifest. We introduce the Killing supervector xi(AI) with the adjoint index I for a non-Abelian gauge group H. This formulation,is applicable to the compactification of a supermembrane from 11 dimensions into D dimensions, such as H = SO(11-D) for the compactification M-11 -> S11-D X M-D(1 <= D <= 9).
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Supermembrane with non-Abelian gauging and Chern-Simons quantization
    Nishino, H
    Rajpoot, S
    EUROPEAN PHYSICAL JOURNAL C, 2005, 39 (03): : 389 - 395
  • [2] Supermembrane with non-Abelian gauging and Chern-Simons quantization
    H. Nishino
    S. Rajpoot
    The European Physical Journal C - Particles and Fields, 2005, 39 : 389 - 395
  • [3] Non-abelian D = 11 supermembrane
    García del Moral M.P.
    Restuccia A.
    Physics of Particles and Nuclei Letters, 2011, 8 (3) : 202 - 208
  • [4] COVARIANT NON-ABELIAN ANOMALOUS COMMUTATORS
    DUNNE, GV
    TRUGENBERGER, CA
    PHYSICS LETTERS B, 1990, 247 (01) : 81 - 87
  • [5] NON-ABELIAN ANYONS IN A NON-COVARIANT APPROACH
    KAPUSTIN, AN
    PRONIN, PI
    PHYSICS LETTERS B, 1993, 303 (1-2) : 45 - 49
  • [6] Gauging the nonlinear a model through a non-Abelian algebra
    Barcelos-Neto, J.
    Oliveira, W.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 56 (04):
  • [7] Gauging of non-Abelian Chern-Simons model
    Monemzadeh, M.
    Ebrahimi, Aghileh S.
    Sramadi, S.
    Deghhani, M.
    MODERN PHYSICS LETTERS A, 2014, 29 (05)
  • [8] Gauging permutation symmetries as a route to non-Abelian fractons
    Prem, Abhinav
    Williamson, Dominic J.
    SCIPOST PHYSICS, 2019, 7 (05):
  • [9] Covariant perturbation theory of non-Abelian kinetic theory
    Zheng, XP
    Li, JR
    CHINESE PHYSICS LETTERS, 2002, 19 (01): : 23 - 25
  • [10] ON THE COVARIANT CONSERVATION LAW FOR NON-ABELIAN EXTERNAL CURRENT
    PRZESZOWSKI, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10): : 1689 - 1699