A Cauchy Transform for Polymonogenic Functions on Fractal Domains

被引:0
|
作者
Gomez Santiesteban, Tania Rosa [1 ]
Abreu Blaya, Ricardo [1 ]
Hernandez Gomez, Juan C. [1 ]
Sigarreta Almira, Jose Maria [1 ]
机构
[1] Univ Autonoma Guerrero, Unidad Acad Matemat, Ave Lazaro Cardenas, Chilpancingo 39087, Guerrero, Mexico
关键词
Polymonogenic functions; Cauchy formula; Fractals; INTEGRAL-OPERATORS;
D O I
10.1007/s11785-022-01228-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Cauchy integral representation formula for polymonogenic functions has been established in smoothly bounded domains, but the method by which it has been obtained cannot be extended to the case of domains with fractal boundary. In this paper an alternative polymonogenic Cauchy transform is defined, which enables us to obtain several types of integral representation formulae, including the Cauchy and Borel-Pompeiu representations in this very general geometric setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Cauchy Transform for Polymonogenic Functions on Fractal Domains
    Tania Rosa Gómez Santiesteban
    Ricardo Abreu Blaya
    Juan C. Hernández Gómez
    José María Sigarreta Almira
    Complex Analysis and Operator Theory, 2022, 16
  • [2] A Cauchy transform for polyanalytic functions on fractal domains
    Gomez Santiesteban, Tania Rosa
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Sigarreta Almira, Jose Maria
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 21 - 32
  • [3] Domains of Existence of Polymonogenic Functions
    Victor Palamodov
    Advances in Applied Clifford Algebras, 2009, 19 : 417 - 425
  • [4] Domains of Existence of Polymonogenic Functions
    Palamodov, Victor
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (02) : 417 - 425
  • [5] Boundary value problems with higher order Lipschitz boundary data for polymonogenic functions in fractal domains
    Abreu Blaya, Ricardo
    Avila Avila, Rafael
    Bory Reyes, Juan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 802 - 808
  • [6] A Hilbert Transform for Matrix Functions on Fractal Domains
    R. Abreu-Blaya
    J. Bory-Reyes
    F. Brackx
    H. De Schepper
    F. Sommen
    Complex Analysis and Operator Theory, 2012, 6 : 359 - 372
  • [7] A Hilbert Transform for Matrix Functions on Fractal Domains
    Abreu-Blaya, R.
    Bory-Reyes, J.
    Brackx, F.
    De Schepper, H.
    Sommen, F.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (02) : 359 - 372
  • [8] THE CAUCHY TRANSFORM ON BOUNDED DOMAINS
    ANDERSON, JM
    HINKKANEN, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (01) : 179 - 185
  • [9] On the generalized Cauchy transform of power functions
    D. Eelbode
    F. Sommen
    Archiv der Mathematik, 2004, 83 : 48 - 59
  • [10] On the generalized Cauchy transform of power functions
    Eelbode, D
    Sommen, F
    ARCHIV DER MATHEMATIK, 2004, 83 (01) : 48 - 59