A consistent comparison of bias models using observational data

被引:13
|
作者
Papageorgiou, A. [1 ,2 ]
Plionis, M. [1 ,3 ]
Basilakos, S. [4 ,5 ]
Ragone-Figueroa, C. [6 ]
机构
[1] Natl Observ Athens, Inst Astron & Astrophys, Athens 15236, Greece
[2] Univ Athens, Fac Phys, Dept Astrophys Astron & Mech, Athens 15783, Greece
[3] Inst Nacl Astrofis Opt & Electr, Puebla 72000, Mexico
[4] Acad Athens, Astron & Appl Math Res Ctr, Athens 11527, Greece
[5] Univ Barcelona, High Energy Phys Grp, Dept ECM, E-08028 Barcelona, Spain
[6] Univ Nacl Cordoba, IATE, CONICET, Astron Observ, RA-5000 Cordoba, Argentina
关键词
galaxies: haloes; quasars: general; cosmology: theory; large-scale structure of Universe; LARGE-SCALE BIAS; GALAXY REDSHIFT SURVEY; N-BODY SIMULATIONS; HALO MASS FUNCTION; COSMOLOGICAL MODELS; TIME EVOLUTION; DARK ENERGY; FLUCTUATIONS; ABUNDANCE; FIELDS;
D O I
10.1111/j.1365-2966.2012.20559.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate five different models for the dark matter (DM) halo bias, that is, the ratio of the fluctuations of mass tracers to those of the underlying mass, by comparing their cosmological evolution using optical quasar (QSO) and galaxy bias data at different redshifts, consistently scaled to the WMAP7 cosmology. Under the assumption that each halo hosts one extragalactic mass tracer, we use a chi(2)-minimization procedure to determine the free parameters of the bias models as well as to statistically quantify their ability to represent the observational data. Using the Akaike information criterion we find that the model that represents best the observational data is the Basilakos & Plionis model with the tracer merger extension. The only other statistically equivalent model, as indicated by the same criterion, is the Tinker et al. model. Finally, we find an average, over the different models, DM halo mass that hosts optical QSOs of M-h similar or equal to 2.7(+/-0.6) x 10(12) h (1) M-circle dot, while the corresponding value for optical galaxies is M-h similar or equal to 6.3(+/-2.1) x 10(11) h(-1) M-circle dot.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 50 条
  • [1] MODELS OF DISKS OF GALAXIES - COMPARISON WITH OBSERVATIONAL DATA
    ZASOV, AV
    MOROZOV, AG
    ASTRONOMICHESKII ZHURNAL, 1985, 62 (03): : 475 - 481
  • [2] Models of quintessence compact stars in Rastall gravity consistent with observational data
    Shahzad, M. R.
    Abbas, G.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [3] Models of quintessence compact stars in Rastall gravity consistent with observational data
    M. R. Shahzad
    G. Abbas
    The European Physical Journal Plus, 135
  • [4] DETECTING BIAS IN OBSERVATIONAL DATA
    HOUSE, AE
    BEHAVIORAL ASSESSMENT, 1980, 2 (01): : 29 - 31
  • [5] Using Observational Data to Calibrate Simulation Models
    Murray, Eleanor J.
    Robins, James M.
    Seage, George R., III
    Lodi, Sara
    Hyle, Emily P.
    Reddy, Krishna P.
    Freedberg, Kenneth A.
    Hernan, Miguel A.
    MEDICAL DECISION MAKING, 2018, 38 (02) : 212 - 224
  • [6] Reducing Bias When Using Observational Data to Examine Intervention Effects: A Comparison of Three Propensity Score Methods
    Schroeder, Krista
    Jia, Haomiao
    Smaldone, Arlene
    NURSING RESEARCH, 2016, 65 (02) : E58 - E59
  • [7] Using interactive data visualization to facilitate user selection and comparison of risk of bias tools for observational studies of exposures
    Taylor, Kyla W.
    Wang, Zhicheng
    Walker, Vickie R.
    Rooney, Andrew A.
    Bero, Lisa A.
    ENVIRONMENT INTERNATIONAL, 2020, 142
  • [8] A comprehensive comparison of cosmological models from the latest observational data
    Shi, K.
    Huang, Y. F.
    Lu, T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 426 (03) : 2452 - 2462
  • [9] Rectifying Bias in Ordinal Observational Data Using Unimodal Label Smoothing
    Haas, Stefan
    Huellermeier, Eyke
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 3 - 18
  • [10] Consistent estimation of linear regression models using matched data
    Hirukawa, Masayuki
    Prokhorov, Artem
    JOURNAL OF ECONOMETRICS, 2018, 203 (02) : 344 - 358