Crowd-Aware Robot Navigation for Pedestrians with Multiple Collision Avoidance Strategies via Map-based Deep Reinforcement Learning

被引:9
|
作者
Yao, Shunyi [1 ]
Chen, Guangda [1 ]
Qiu, Quecheng [2 ]
Ma, Jun [2 ]
Chen, Xiaoping [1 ]
Ji, Jianmin [1 ]
机构
[1] Univ Sci & Technol China USTC, Sch Comp Sci & Technol, Hefei 230026, Peoples R China
[2] USTC, Sch Data Sci, Hefei 230026, Peoples R China
关键词
D O I
10.1109/IROS51168.2021.9636579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is challenging for a mobile robot to navigate through human crowds. Existing approaches usually assume that pedestrians follow a predefined collision avoidance strategy, like social force model (SFM) or optimal reciprocal collision avoidance (ORCA). However, their performances commonly need to be further improved for practical applications, where pedestrians follow multiple different collision avoidance strategies. In this paper, we propose a map-based deep reinforcement learning approach for crowd-aware robot navigation with various pedestrians. We use the sensor map to represent the environmental information around the robot, including its shape and observable appearances of obstacles. We also introduce the pedestrian map that specifies the movements of pedestrians around the robot. By applying both maps as inputs of the neural network, we show that a navigation policy can be trained to better interact with pedestrians following different collision avoidance strategies. We evaluate our approach under multiple scenarios both in the simulator and on an actual robot. The results show that our approach allows the robot to successfully interact with various pedestrians and outperforms compared methods in terms of the success rate.
引用
收藏
页码:8144 / 8150
页数:7
相关论文
共 50 条
  • [1] Crowd-Aware Socially Compliant Robot Navigation via Deep Reinforcement Learning
    Bingxin Xue
    Ming Gao
    Chaoqun Wang
    Yao Cheng
    Fengyu Zhou
    [J]. International Journal of Social Robotics, 2024, 16 : 197 - 209
  • [2] Crowd-Aware Socially Compliant Robot Navigation via Deep Reinforcement Learning
    Xue, Bingxin
    Gao, Ming
    Wang, Chaoqun
    Cheng, Yao
    Zhou, Fengyu
    [J]. INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2024, 16 (01) : 197 - 209
  • [3] Memory-based crowd-aware robot navigation using deep reinforcement learning
    Samsani, Sunil Srivatsav
    Mutahira, Husna
    Muhammad, Mannan Saeed
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 2147 - 2158
  • [4] Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning
    Chen, Changan
    Liu, Yuejiang
    Kreiss, Sven
    Alahi, Alexandre
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 6015 - 6022
  • [5] Memory-based crowd-aware robot navigation using deep reinforcement learning
    Sunil Srivatsav Samsani
    Husna Mutahira
    Mannan Saeed Muhammad
    [J]. Complex & Intelligent Systems, 2023, 9 : 2147 - 2158
  • [6] Learning Crowd-Aware Robot Navigation from Challenging Environments via Distributed Deep Reinforcement Learning
    Matsuzaki, Sango
    Hasegawa, Yuji
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 4730 - 4736
  • [7] Crowd-Aware Mobile Robot Navigation Based on Improved Decentralized Structured RNN via Deep Reinforcement Learning
    Zhang, Yulin
    Feng, Zhengyong
    [J]. SENSORS, 2023, 23 (04)
  • [8] Multi-Robot Collision Avoidance with Map-based Deep Reinforcement Learning
    Yao, Shunyi
    Chen, Guangda
    Pan, Lifan
    Ma, Jun
    Ji, Jianmin
    Chen, Xiaoping
    [J]. 2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 532 - 539
  • [9] Deep Reinforcement Learning of Map-Based Obstacle Avoidance for Mobile Robot Navigation
    Chen G.
    Pan L.
    Chen Y.
    Xu P.
    Wang Z.
    Wu P.
    Ji J.
    Chen X.
    [J]. SN Computer Science, 2021, 2 (6)
  • [10] RMRL: Robot Navigation in Crowd Environments With Risk Map-Based Deep Reinforcement Learning
    Yang, Haodong
    Yao, Chenpeng
    Liu, Chengju
    Chen, Qijun
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (12) : 7930 - 7937