Land cover classification in fused multisensor multispectral satellite imagery

被引:0
|
作者
Moody, Daniela I. [1 ]
Bauer, Dana E. [2 ]
Brumby, Steven P. [1 ]
Chisolm, Eric D. [1 ]
Warren, Michael S. [1 ]
Skillman, Samuel W. [1 ]
Keisler, Ryan [1 ]
机构
[1] Descartes Labs, Los Alamos, NM 87544 USA
[2] Planet Labs, San Francisco, CA 94103 USA
关键词
multiscale multispectral satellite imagery; unsupervised classification; data fusion; multi-INT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increase in number of deployed satellite constellations and the improvement in sensing capabilities have led to large volumes of data with a wide range of temporal and spatial coverage. The data analysis capability, however, has been lagging, and has historically focused on single-sensor individual images. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate information across multiple sensors and bands, and at multiple scales. We focus on field and landmark separation around Clinton, Iowa, and show land cover classification results that combine fused imagery from Planet Labs and Landsat 8. Classification performance is assessed using Cropland Data Layer images generated by USDA. Our method combines spectral, spatial, and temporal information to improve the accuracy of practical land cover classification.
引用
收藏
页码:85 / 88
页数:4
相关论文
共 50 条
  • [1] Land Cover Classification in Multispectral Satellite Imagery using Sparse Approximations on Learned Dictionaries
    Moody, Daniela I.
    Brumby, Steven P.
    Rowland, Joel C.
    Altmann, Garrett L.
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [2] Behind-the-Scenes: Multispectral imagery and land cover classification
    M'Closkey, Karen
    VanDerSys, Keith
    [J]. JOURNAL OF LANDSCAPE ARCHITECTURE, 2022, 17 (01) : 22 - 37
  • [3] On Satellite Imagery of Land Cover Classification for Agricultural Development
    Alzahrani, Ali
    Bhuiyan, Al-Amin
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (01) : 9 - 18
  • [4] Evaluation of multiscale morphological segmentation of multispectral imagery for land cover classification
    Li, PJ
    Xiao, XB
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2676 - 2679
  • [5] Land Cover Classification of Multispectral Satellite Images Using QDA Classifier
    Menaka, D.
    Suresh, L. Padma
    Kumar, S. Selvin Prem
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1383 - 1386
  • [6] Unsupervised Land Cover Classification in Multispectral Imagery with Sparse Representations on Learned Dictionaries
    Moody, Daniela I.
    Brumby, Steven P.
    Rowland, Joel C.
    Gangodagamage, Chandana
    [J]. 2012 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2012,
  • [7] Urban land cover and land use classification using multispectral sentinal-2 imagery
    Pramod Kumar Soni
    Navin Rajpal
    Rajesh Mehta
    Vikash Kumar Mishra
    [J]. Multimedia Tools and Applications, 2022, 81 : 36853 - 36867
  • [8] Urban land cover and land use classification using multispectral sentinal-2 imagery
    Soni, Pramod Kumar
    Rajpal, Navin
    Mehta, Rajesh
    Mishra, Vikash Kumar
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 36853 - 36867
  • [9] Multispectral and multitemporal satellite remote sensing imagery for Bucharest land cover dynamics assessment
    Zoran, M. A.
    Savastru, R.
    Savastru, D.
    Tautan, M.
    Miclos, S.
    [J]. ROMOPTO 2009: NINTH CONFERENCE ON OPTICS: MICRO- TO NANOPHOTONICS II, 2010, 7469
  • [10] Texture analysis of IKONOS satellite imagery for urban land use and land cover classification
    Kabir, S.
    He, D-C
    Sanusi, M. A.
    Hussin, W. M. A. Wan
    [J]. IMAGING SCIENCE JOURNAL, 2010, 58 (03): : 163 - 170