3D automated lung nodule segmentation in HRCT

被引:0
|
作者
Fetita, CI
Prêteux, R
Beigelman-Aubry, C
Grenier, P
机构
[1] Inst Natl Telecommun, Grp Ecol Telecommun, ARTEMIS Project Unit, F-91011 Evry, France
[2] Hop La Pitie Salpetriere, Cent Radiol Serv, F-75651 Paris 13, France
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fully-automated 3D image analysis method is proposed to segment lung nodules in HRCT. A specific gray-level mathematical morphology operator, the SMDC-connection cost, acting in the 3D space of the thorax volume is defined in order to discriminate lung nodules from other dense (vascular) structures. Applied to clinical data concerning patients with pulmonary carcinoma, the proposed method detects isolated, juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm diameter. The segmentation accuracy was objectively evaluated on real and simulated nodules. The method showed a sensitivity and a specificity ranging from 85% to 97% and from 90% to 98%, respectively.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 50 条
  • [1] Hessian based approaches for 3D lung nodule segmentation
    Goncalves, L.
    Novo, J.
    Campilho, A.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 61 : 1 - 15
  • [2] A PROBABILISTIC MODEL FOR SEGMENTATION OF AMBIGUOUS 3D LUNG NODULE
    Long, Xiaojiang
    Chen, Wei
    Wang, Qiuli
    Zhang, Xiaohong
    Liu, Chen
    Li, Yucong
    Zhang, Jiuquan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1130 - 1134
  • [3] Soft computing approach to 3D lung nodule segmentation in CT
    Badura, P.
    Pietka, E.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 53 : 230 - 243
  • [4] Automated lung nodule detection and segmentation
    Schneider, Christian
    Amjadi, Azad
    Richter, Anja
    Fiebich, Martin
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [5] Lung Nodule Segmentation Method Based on 3D Rem-Unet
    Li, Lin
    Xu, Shaoqiang
    [J]. 2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 82 - 87
  • [6] Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement
    Liu, Jinjiang
    Li, Yuqin
    Li, Wentao
    Li, Zhenshuang
    Lan, Yihua
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (05): : 3016 - 3037
  • [7] MRUNet-3D: A multi-stride residual 3D UNet for lung nodule segmentation
    Bbosa, Ronald
    Gui, Hao
    Luo, Fei
    Liu, Feng
    Efio-Akolly, Kafui
    Chen, Yi-Ping Phoebe
    [J]. METHODS, 2024, 226 : 89 - 101
  • [8] An Automated Lung Parenchyma Segmentation Method for 3D Thoracic MR Images
    Li, Yan-Feng
    Chen, Hou-Jin
    Wei, Xue-Ye
    [J]. 2015 International Conference on Software Engineering and Information System (SEIS 2015), 2015, : 330 - 336
  • [9] Automated MRI Lung Segmentation and 3D Morphologic Features for Quantification of Neonatal Lung Disease
    Mairhoermann, Benedikt
    Castelblanco, Alejandra
    Haefner, Friederike
    Koliogiannis, Vanessa
    Haist, Lena
    Winter, Dominik
    Flemmer, Andreas
    Ehrhardt, Harald
    Stoecklein, Sophia
    Dietrich, Olaf
    Foerster, Kai
    Hilgendorff, Anne
    Schubert, Benjamin
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (06)
  • [10] Central Medialness Adaptive Strategy for 3D Lung Nodule Segmentation in Thoracic CT Images
    Goncalves, Luis
    Novo, Jorge
    Campilho, Aurelio
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 583 - 590