Data-driven causal model discovery and personalized prediction in Alzheimer's disease

被引:7
|
作者
Zheng, Haoyang [1 ]
Petrella, Jeffrey R. [2 ]
Doraiswamy, P. Murali [3 ,4 ,5 ]
Lin, Guang [1 ,6 ]
Hao, Wenrui [7 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Duke Univ Hlth Syst, Dept Radiol, Durham, NC 27710 USA
[3] Duke Univ, Sch Med, Dept Psychiat, Durham, NC 27710 USA
[4] Duke Univ, Sch Med, Dept Med, Durham, NC 27710 USA
[5] Duke Inst Brain Sci, Durham, NC 27710 USA
[6] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[7] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
PROGRESSION; ASSOCIATION;
D O I
10.1038/s41746-022-00632-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
With the explosive growth of biomarker data in Alzheimer's disease (AD) clinical trials, numerous mathematical models have been developed to characterize disease-relevant biomarker trajectories over time. While some of these models are purely empiric, others are causal, built upon various hypotheses of AD pathophysiology, a complex and incompletely understood area of research. One of the most challenging problems in computational causal modeling is using a purely data-driven approach to derive the model's parameters and the mathematical model itself, without any prior hypothesis bias. In this paper, we develop an innovative data-driven modeling approach to build and parameterize a causal model to characterize the trajectories of AD biomarkers. This approach integrates causal model learning, population parameterization, parameter sensitivity analysis, and personalized prediction. By applying this integrated approach to a large multicenter database of AD biomarkers, the Alzheimer's Disease Neuroimaging Initiative, several causal models for different AD stages are revealed. In addition, personalized models for each subject are calibrated and provide accurate predictions of future cognitive status.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Data-driven causal model discovery and personalized prediction in Alzheimer's disease
    Haoyang Zheng
    Jeffrey R. Petrella
    P. Murali Doraiswamy
    Guang Lin
    Wenrui Hao
    [J]. npj Digital Medicine, 5
  • [2] Data-driven discovery of causal interactions
    Ma, Saisai
    Liu, Lin
    Li, Jiuyong
    Thuc Duy Le
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (03) : 285 - 297
  • [3] Data-driven discovery of causal interactions
    Saisai Ma
    Lin Liu
    Jiuyong Li
    Thuc Duy Le
    [J]. International Journal of Data Science and Analytics, 2019, 8 : 285 - 297
  • [4] A data-driven model of biomarker changes in sporadic Alzheimer's disease
    Young, Alexandra L.
    Oxtoby, Neil P.
    Daga, Pankaj
    Cash, David M.
    Fox, Nick C.
    Ourselin, Sebastien
    Schott, Jonathan M.
    Alexander, Daniel C.
    [J]. BRAIN, 2014, 137 : 2564 - 2577
  • [5] Ensemble feature selection with data-driven thresholding for Alzheimer's disease biomarker discovery
    Spooner, Annette
    Mohammadi, Gelareh
    Sachdev, Perminder S.
    Brodaty, Henry
    Sowmya, Arcot
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)
  • [6] Ensemble feature selection with data-driven thresholding for Alzheimer's disease biomarker discovery
    Annette Spooner
    Gelareh Mohammadi
    Perminder S. Sachdev
    Henry Brodaty
    Arcot Sowmya
    [J]. BMC Bioinformatics, 24
  • [7] Data-driven microbiota biomarker discovery for personalized drug therapy of cardiovascular disease
    Shen, Li
    Shen, Ke
    Bai, Jinwei
    Wang, Jiao
    Singla, Rajeev K.
    Shen, Bairong
    [J]. PHARMACOLOGICAL RESEARCH, 2020, 161
  • [8] Data-driven Causal Association Discovery in Manufacturing Industries
    Li, Yiming
    Xu, Jia
    Li, Li
    Iung, Benoit
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5566 - 5571
  • [9] Data-driven modeling of mitochondrial dysfunction in Alzheimer's disease
    Toglia, Patrick
    Demuro, Angelo
    Mak, Don-On Daniel
    Ullah, Ghanim
    [J]. CELL CALCIUM, 2018, 76 : 23 - 35
  • [10] Data-driven prediction of fatigue in Parkinson's disease patients
    Lee, D. G.
    Mirian, M.
    Adrian, L.
    Yu, A.
    Neilson, S.
    Sundvick, K.
    Golz, E.
    Folger, L.
    Appel-Cresswell, S.
    [J]. MOVEMENT DISORDERS, 2021, 36 : S422 - S423