The number of optimal binary one-ended codes

被引:0
|
作者
Kukorelly, Z [1 ]
机构
[1] Univ Calif San Diego, Informat Coding Lab, San Diego, CA 92103 USA
关键词
D O I
10.1109/ISIT.2000.866304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Binary prefix-free codes in which all codewords end with "1" are considered. A recursion is given to construct all "optimal" 1-ended codes and to compute the number of such codes with n codewords.
引用
收藏
页码:14 / 14
页数:1
相关论文
共 50 条
  • [1] Optimal binary one-ended codes
    Kukorelly, Z
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 2125 - 2132
  • [2] ONE-ENDED INSERTION OF IS911
    POLARD, P
    SEROUDE, L
    FAYET, O
    PRERE, MF
    CHANDLER, M
    [J]. JOURNAL OF BACTERIOLOGY, 1994, 176 (04) : 1192 - 1196
  • [3] MATHEMATICS TEACHING - A ONE-ENDED BRIDGE
    LANG, B
    WINTER, R
    [J]. JOURNAL OF CURRICULUM STUDIES, 1983, 15 (04) : 425 - 428
  • [4] JUNCTION SEQUENCES GENERATED BY ONE-ENDED TRANSPOSITION
    MOTSCH, S
    SCHMITT, R
    AVILA, P
    DELACRUZ, F
    WARD, E
    GRINSTED, J
    [J]. NUCLEIC ACIDS RESEARCH, 1985, 13 (09) : 3335 - 3342
  • [5] One-ended subgroups of mapping class groups
    Bowditch, Brian H.
    [J]. HYPERBOLIC GEOMETRY AND GEOMETRIC GROUP THEORY, 2017, 73 : 13 - 36
  • [6] On tree-decompositions of one-ended graphs
    Carmesin, Johannes
    Lehner, Florian
    Moller, Rognvaldur G.
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 524 - 539
  • [7] Hamilton decompositions of one-ended Cayley graphs
    Erde, Joshua
    Lehner, Florian
    Pitz, Max
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 140 : 171 - 191
  • [8] ONE-ENDED SPANNING TREES AND DEFINABLE COMBINATORICS
    Bowen, Matt
    Poulin, Antoine
    Zomback, Jenna
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [9] Copies of one-ended groups in mapping class groups
    Dahmani, Francois
    Fujiwara, Koji
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2009, 3 (03) : 359 - 377
  • [10] Unimodular random one-ended planar graphs are sofic
    Timar, Adam
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (06): : 851 - 858