Mathematical analysis of local and global dynamics of a new epidemic model

被引:1
|
作者
Cakan, Sumeyye [1 ]
机构
[1] Inonu Univ, Fac Arts & Sci, Dept Math, Malatya, Turkey
关键词
Lyapunov function; LaSalle's invariance principle; the second additive compound matrix; Li-Muldowney geometric approach; next generation matrix method; basic reproduction number; Jacobian matrix; Routh-Hurwitz criteria;
D O I
10.3906/mat-2107-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a new SEIR epidemic model reflecting the spread of infectious diseases. After calculating basic reproduction number R-0 by the next generation matrix method, we examine the stability of the model. The model exhibits threshold behavior according to whether the basic reproduction number R-0 is greater than unity or not. By using well-known Routh-Hurwitz criteria, we deal with local asymptotic stability of equilibrium points of the model according to R-0. Also, we present a mathematical analysis for the global dynamics in the equilibrium points of this model using LaSalle's Invariance Principle associated with Lyapunov functional technique and Li-Muldowney geometric approach, respectively.
引用
收藏
页码:533 / 551
页数:19
相关论文
共 50 条
  • [1] Global dynamics of a dengue epidemic mathematical model
    Cai, Liming
    Guo, Shumin
    Li, XueZhi
    Ghosh, Mini
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2297 - 2304
  • [2] Global stability analysis of an extended SUC epidemic mathematical model
    Chen, Mengxin
    Kwak, Soobin
    Ham, Seokjun
    Hwang, Youngjin
    Kim, Junseok
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024,
  • [3] MATHEMATICAL MODEL OF ECONOMIC DYNAMICS IN AN EPIDEMIC
    Boranbayev, A.
    Obrosova, N.
    Shananin, A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 797 - 813
  • [4] MATHEMATICAL AND NUMERICAL ANALYSIS OF SIQR EPIDEMIC MODEL OF MEASLES DISEASE DYNAMICS
    Rehman, Muhammad Aziz-Ur
    Rana, Anum Farooq
    Ahmed, Nauman
    Raza, Ali
    Al-Johani, Amnah S.
    Mohamed, Abdullah
    Iqbal, Muhammad Sajid
    Rafiq, Muhammad
    Khan, Ilyas
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [5] A MATHEMATICAL ANALYSIS FOR A DIFFUSIVE EPIDEMIC MODEL WITH CRISS-CROSS DYNAMICS
    Li Zhengyuan\ Tao Jiyuan\ Ye Qixiao
    [J]. Applied Mathematics:A Journal of Chinese Universities, 1999, (04) : 389 - 400
  • [6] A mathematical analysis for a diffusive epidemic model with criss-cross dynamics
    Li Z.
    Tao J.
    Ye Q.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (4) : 389 - 400
  • [7] GLOBAL DYNAMICS OF A COUPLED EPIDEMIC MODEL
    Shu, Hongying
    Wang, Xiang-Sheng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1575 - 1585
  • [8] Global analysis of the dynamics of a mathematical model to intermittent HIV treatment
    de Carvalho, Tiago
    Cristiano, Rony
    Goncalves, Luiz Fernando
    Tonon, Durval Jose
    [J]. NONLINEAR DYNAMICS, 2020, 101 (01) : 719 - 739
  • [9] Global analysis of the dynamics of a mathematical model to intermittent HIV treatment
    Tiago de Carvalho
    Rony Cristiano
    Luiz Fernando Gonçalves
    Durval José Tonon
    [J]. Nonlinear Dynamics, 2020, 101 : 719 - 739
  • [10] Mathematical analysis for an evolutionary epidemic model
    Inaba, H
    [J]. MATHEMATICAL MODELS IN MEDICAL AND HEALTH SCIENCE, 1998, : 213 - 236