Mathematical modeling of the supercooled steel ingot formation. Problem statement

被引:1
|
作者
Bazdyreva, Julia [1 ]
Bilousov, Vyacheslav [1 ]
Nedopekin, Fedor [1 ]
Bondarenko, Vitaliy [1 ]
Bodriaha, Viktor [1 ]
Kukharev, Alexey [2 ]
机构
[1] Donetsk Natl Univ, Donetsk, Ukraine
[2] Lugansk Natl Univ, Stakhanov, Ukraine
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2020年 / 229卷 / 2-3期
关键词
D O I
10.1140/epjst/e2019-900108-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The article considers hydrodynamic and heat exchange processes taking place in a supercooled melt, which is located in a stationary chill mold. We share the developed physical and mathematical model of a supercooled ingot solidification on the basis of the solidification process theory. A method for numerical realization of the obtained model is described. The article assesses the effect of circulating flows caused by forced convection on the solidification of a melt which is in a fixed chill. Studies show that only at the initial stage of solidification, certain mixing effect can be observed. The further influence of mixing practically does not affect the temperature distribution in the ingot body.
引用
收藏
页码:495 / 500
页数:6
相关论文
共 50 条
  • [1] Mathematical modeling of the supercooled steel ingot formation. Problem statement
    Julia Bazdyreva
    Vyacheslav Bilousov
    Fedor Nedopekin
    Vitaliy Bondarenko
    Viktor Bodriaha
    Alexey Kukharev
    The European Physical Journal Special Topics, 2020, 229 : 495 - 500
  • [2] Mathematical modeling of the steel ingot teeming and the solidification process
    Gamanyuk, S. B.
    Zyuban, N. A.
    Rutskii, D. V.
    Palatkin, S. V.
    INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, AUTOMATION AND CONTROL SYSTEMS 2016, 2017, 177
  • [3] Modeling and Predication of Shrinkage Porosity Formation in Steel Ingot
    Zhang, Chaojie
    Bao, Yanping
    Wang, Min
    Zhang, Lechen
    TMS 2017 146TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2017, : 539 - 550
  • [4] Mathematical Modeling of the Growth of the Peripheral Zone of a Semikilled Steel Ingot.
    Tokovoi, O.K.
    Povolotskii, D.Ya.
    Arkhinenko, V.V.
    1600,
  • [5] Selection of applicability limits of a mathematical model of turbulence in formation of a steel ingot
    Povkh I.L.
    Nedopekin F.V.
    Belousov V.V.
    Journal of Engineering Physics and Thermophysics, 1997, 70 (1) : 45 - 49
  • [6] The problem of pigment formation.
    Bloch, B
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 1929, 177 : 609 - 618
  • [7] MODELING OF THE GRAIN STRUCTURE FORMATION IN THE STEEL CONTINUOUS INGOT BY CAFE METHOD
    Burbelko, A.
    Falkus, J.
    Kapturkiewicz, W.
    Solek, K.
    Drozdz, P.
    Wrobel, M.
    ARCHIVES OF METALLURGY AND MATERIALS, 2012, 57 (01) : 379 - 384
  • [8] Mathematical model of steel ingot generation in VAR
    Gotina, O.V.
    Ryabova, E.I.
    Folomeeva, E.M.
    Smirnov, A.P.
    Stal', 1993, (05): : 33 - 36
  • [9] Mathematical predictions of brass/steel ingot structures
    Wolczynski, Waldemar
    Ivanowa, Anna A.
    Kwapisinski, Piotr
    SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2018, 56 (128): : 47 - 54
  • [10] A MATHEMATICAL-MODEL OF STRUCTURE FORMATION IN A CONTINUOUSLY CAST INGOT OF A FERMANAL - TYPE STEEL
    CHEREPANOV, AN
    KUTSENKO, VM
    SVOBODOV, AN
    RUSSIAN METALLURGY, 1989, (05): : 53 - 59