ANN Based Prediction of Daily Global Solar Radiation for Photovoltaics Applications

被引:0
|
作者
Yadav, Amit Kumar [1 ]
Malik, Hasmat [2 ]
Chandel, S. S. [1 ]
机构
[1] Natl Inst Technol, Ctr Energy & Environm Engn, Hamirpur 177005, Himachal Prades, India
[2] Govt NCT Delhi, Dwarka Sect 3, NSIT, Dept Instrumentat & Control Engn, Delhi 110078, India
关键词
DGSR; prediction; input variables;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Measured value of minimum air temperature, maximum air temperature, average air temperature and solar radiation between 1 January 2012 to 31 April 2014 for Hamirpur city in Himachal Pradesh, India are used for prediction of daily global solar radiation (DGSR) with artificial neural network (ANN) technique. The prediction of DGSR are made with three combinations of input variables namely: (i) average air temperature, maximum air temperature and minimum air temperature, (ii) average air temperature and maximum air temperature, (iii) average air temperature. The results shows that ANN model with input variable as average air temperature and maximum air temperature predict DGSR with mean absolute percentage error of 5.35%. It can be used for predicting DGSR for sites where measured solar radiation is not available, proving useful for sizing of solar photovoltaic systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] ANN-based modelling and estimation of daily global solar radiation data: A case study
    Benghanem, M.
    Mellit, A.
    Alamri, S. N.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (07) : 1644 - 1655
  • [2] On a universal model for the prediction of the daily global solar radiation
    Kaplanis, S.
    Kumar, Jatin
    Kaplani, E.
    [J]. RENEWABLE ENERGY, 2016, 91 : 178 - 188
  • [3] Estimation of the daily global solar radiation based on Box-Jenkins and ANN models: A combined approach
    Gairaa, Kacem
    Khellaf, Abdallah
    Messlem, Youcef
    Chellali, Farouk
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 57 : 238 - 249
  • [4] Prediction of daily global solar radiation using fuzzy systems
    Iqdour, R.
    Zeroual, A.
    [J]. INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2007, 26 (01) : 19 - 29
  • [5] Artificial neural network based prediction model of daily global solar radiation in Morocco
    Mejdoul, R.
    Taqi, M.
    Belouaggadia, N.
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2013, 5 (06)
  • [6] Prediction of global daily solar radiation using higher order statistics
    Safi, S
    Zeroual, A
    Hassani, M
    [J]. RENEWABLE ENERGY, 2002, 27 (04) : 647 - 666
  • [7] Model selection for accurate daily global solar radiation prediction in China
    Gouda, Shaban G.
    Hussein, Zakia
    Luo, Shuai
    Yuan, Qiaoxia
    [J]. JOURNAL OF CLEANER PRODUCTION, 2019, 221 : 132 - 144
  • [8] An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction
    Chaibi, Mohamed
    Benghoulam, El Mahjoub
    Tarik, Lhoussaine
    Berrada, Mohamed
    El Hmaidi, Abdellah
    [J]. ENERGIES, 2021, 14 (21)
  • [9] A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
    Babak Jahani
    Babak Mohammadi
    [J]. Theoretical and Applied Climatology, 2019, 137 : 1257 - 1269
  • [10] A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran
    Jahani, Babak
    Mohammadi, Babak
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 137 (1-2) : 1257 - 1269