Universalities of reproducing kernels revisited

被引:3
|
作者
Chen, Wenjian [1 ]
Wang, Benxun [2 ]
Zhang, Haizhang [3 ,4 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
kernel methods; universal kernels; characteristic kernels; density; translation-invariant kernels; weighted polynomial kernels; 41A30; 68T05; BANACH-SPACES; L(1) NORM; THEOREM; SETS;
D O I
10.1080/00036811.2015.1069277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kernel methods have been widely applied to machine learning and other questions of approximating an unknown function from its finite sample data. To ensure arbitrary accuracy of such an approximation, various denseness conditions are imposed on the selected kernel. This note contributes to the study of universal, characteristic, and C-0-universal kernels. We first give a simple and direct description of the difference and relation among these three kinds of universalities of kernels. We then focus on translation-invariant and Hilbert-Schmidt kernels formed by polynomials. A simple and shorter proof of the known characterization of characteristic translation-invariant kernels will be presented. The main purpose of the note is to give a delicate discussion on the universalities of Hilbert-Schmidt kernels formed by weighted polynomials.
引用
收藏
页码:1776 / 1791
页数:16
相关论文
共 50 条
  • [1] On Hardy kernels as reproducing kernels
    Oliva-Maza, Jesus
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (02): : 428 - 442
  • [2] REPRODUCING KERNELS, FUNDAMENTAL KERNELS AND RESOLVENT KERNELS
    STORK, W
    MATHEMATICA SCANDINAVICA, 1977, 40 (01) : 51 - 68
  • [3] Refinement of reproducing kernels
    Xu, Yuesheng
    Zhang, Haizhang
    Journal of Machine Learning Research, 2009, 10 : 107 - 140
  • [4] Theory of reproducing kernels
    Saitoh, S
    ANALYSIS AND APPLICATIONS - ISAAC 2001, 2003, 10 : 135 - 150
  • [5] A CLASS OF REPRODUCING KERNELS
    HATTEMER, JR
    ILLINOIS JOURNAL OF MATHEMATICS, 1968, 12 (02) : 335 - &
  • [6] The Polyanalytic Reproducing Kernels
    Hachadi, Hicham
    Youssfi, El Hassan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (07) : 3457 - 3478
  • [7] Refinement of Reproducing Kernels
    Xu, Yuesheng
    Zhang, Haizhang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 107 - 140
  • [8] The Polyanalytic Reproducing Kernels
    Hicham Hachadi
    El Hassan Youssfi
    Complex Analysis and Operator Theory, 2019, 13 : 3457 - 3478
  • [9] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [10] On functional reproducing kernels
    Zhou, Weiqi
    OPEN MATHEMATICS, 2023, 21 (01):