Graph Representation Learning via Adversarial Variational Bayes

被引:2
|
作者
Li, Yunhe [1 ]
Hu, Yaochen [2 ]
Zhang, Yingxue [2 ]
机构
[1] Univ Montreal, Montreal, PQ, Canada
[2] Huawei Noahs Ark Lab, Montreal, PQ, Canada
关键词
Graph Representation Learning; Adversarial Variational Bayes;
D O I
10.1145/3459637.3482116
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Methods that learn representations of nodes in a graph play an important role in network analysis. Most of the existing methods of graph representation learning have focused on embedding each node in a graph as a single vector in a low-dimensional continuous space. However, these methods have a crucial limitation: the lack of modeling the uncertainty about the representation. In this work, inspired by Adversarial Variational Bayes (AVB) [22], we propose GraphAVB, a probabilistic generative model to learn node representations that preserve connectivity patterns and capture the uncertainties in the graph. Unlike Graph2Gauss [3] which embeds each node as a Gaussian distribution, we represent each node as an implicit distribution parameterized by a neural network in the latent space, which is more flexible and expressive to capture the complex uncertainties in real-world graph-structured datasets. To perform the designed variational inference algorithm with neural samplers, we introduce an auxiliary discriminative network that is used to infer the log probability ratio terms in the objective function and allows us to cast maximizing the objective function as a two-player game. Experimental results on multiple real-world graph datasets demonstrate the effectiveness of our proposed method GraphAVB, outperforming many competitive baselines on the task of link prediction. The superior performances of our proposed method GraphAVB also demonstrate that the downstream tasks can benefit from the captured uncertainty.
引用
下载
收藏
页码:3237 / 3241
页数:5
相关论文
共 50 条
  • [1] Variational Graph Autoencoder with Adversarial Mutual Information Learning for Network Representation Learning
    Li, Dongjie
    Li, Dong
    Lian, Guang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 17 (03)
  • [2] Adversarial learning based residual variational graph normalized autoencoder for network representation
    Shen, Zhengran
    Guo, Xiaoxin
    Feng, Bo
    Cheng, Hangyuan
    Ni, Shuang
    Dong, Hongliang
    INFORMATION SCIENCES, 2023, 640
  • [3] Graph Representation Learning via Ladder Gamma Variational Autoencoders
    Sarkar, Arindam
    Mehta, Nikhil
    Rai, Piyush
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5604 - 5611
  • [4] Learning Graph Representation With Generative Adversarial Nets
    Wang, Hongwei
    Wang, Jialin
    Wang, Jia
    Zhao, Miao
    Zhang, Weinan
    Zhang, Fuzheng
    Li, Wenjie
    Xie, Xing
    Guo, Minyi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (08) : 3090 - 3103
  • [5] Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
    Mescheder, Lars
    Nowozin, Sebastian
    Geiger, Andreas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [6] Variational Adversarial Defense: A Bayes Perspective for Adversarial Training
    Zhao, Chenglong
    Mei, Shibin
    Ni, Bingbing
    Yuan, Shengchao
    Yu, Zhenbo
    Wang, Jun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3047 - 3063
  • [7] Variational Graph Convolutional Networks for Dynamic Graph Representation Learning
    Mir, Aabid A.
    Zuhairi, Megat F.
    Musa, Shahrulniza
    Alanazi, Meshari H.
    Namoun, Abdallah
    IEEE Access, 2024, 12 : 161697 - 161717
  • [8] Importance Weighted Adversarial Variational Bayes
    Gomez-Sancho, Marta
    Hernandez-Lobato, Daniel
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 374 - 386
  • [9] Learning Robust Representation Through Graph Adversarial Contrastive Learning
    Guo, Jiayan
    Li, Shangyang
    Zhao, Yue
    Zhang, Yan
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13245 LNCS : 682 - 697
  • [10] Learning Robust Representation Through Graph Adversarial Contrastive Learning
    Guo, Jiayan
    Li, Shangyang
    Zhao, Yue
    Zhang, Yan
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT I, 2022, : 682 - 697