AN ADAPTIVE MULTISCALE RANDOM FIELD TECHNIQUE FOR UNSUPERVISED CHANGE DETECTION IN VHR MULTITEMPORAL IMAGES

被引:0
|
作者
Bovolo, Francesca [1 ]
Bruzzone, Lorenzo [1 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Povo, Trento, Italy
关键词
Change detection; VHR images; Multiscale Random Fields; multitemporal images;
D O I
10.1109/IGARSS.2009.5417492
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a novel multiscale technique for unsupervised change detection in very high geometrical resolution images based on adaptive multiscale random fields (AMSRF). AMSRFs are defined according to hierarchical segmentation applied to multitemporal images. Under the assumption that the relationship between random fields at different scales can be modeled according to a Markov chain, the statistical distribution of classes is sequentially estimated from the finest to the coarsest scale, and class labels propagated from the coarsest to the finest one The method is developed within the framework of the Bayes decision theory. Experimental results obtained on a SPOT-5 multitemporal data set confirm the effectiveness of the proposed approach.
引用
收藏
页码:3157 / 3160
页数:4
相关论文
共 50 条
  • [1] A multiscale technique for reducing registration noise in change detection on multitemporal VHR images
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marchesi, Silvia
    [J]. 2007 INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTI-TEMPORAL REMOTE SENSING IMAGES, 2007, : 21 - 26
  • [2] An adaptive multiscale approach to unsupervised change detection in multitemporal SAR images
    Bovolo, F
    Bruzzone, L
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1069 - 1072
  • [3] An Approach for Unsupervised Change Detection in Multitemporal VHR Images Acquired by Different Multispectral Sensors
    Solano-Correa, Yady Tatiana
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. REMOTE SENSING, 2018, 10 (04):
  • [4] An adaptive parcel-based technique robust to registration noise for change detection in multitemporal VHR images
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marchesi, Silvia
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748
  • [5] Unsupervised Change Detection in Multitemporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network
    Wu, Chen
    Chen, Hongruixuan
    Du, Bo
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12084 - 12098
  • [6] A contextual multiscale unsupervised method for change detection with multitemporal remote-sensing images
    Moser, Gabriele
    Angiati, Elena
    Serpico, Sebastiano B.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 572 - 577
  • [7] Multiscale Change Detection in Multitemporal Satellite Images
    Celik, Turgay
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 820 - 824
  • [8] Hierarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images
    Liu, Sicong
    Bruzzone, Lorenzo
    Bovolo, Francesca
    Du, Peijun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 244 - 260
  • [9] An Approach to Unsupervised Detection of Fully and Partially Destroyed Buildings in Multitemporal VHR SAR Images
    Pirrone, Davide
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5938 - 5953
  • [10] Multiscale Unsupervised Change Detection on Optical Images by Markov Random Fields and Wavelets
    Moser, Gabriele
    Angiati, Elena
    Serpico, Sebastiano B.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 725 - 729