Convex Parameterizations and Fidelity Bounds for Nonlinear Identification and Reduced-Order Modelling

被引:28
|
作者
Tobenkin, Mark M. [1 ]
Manchester, Ian R. [2 ,3 ]
Megretski, Alexandre [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Aerosp Mech & Mech Engn, Sydney, NSW 2006, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Linear matrix inequalities; nonlinear system identification; reduced order systems; stability criteria; SYSTEM-IDENTIFICATION; SUBSPACE IDENTIFICATION; GUARANTEED STABILITY; OPTIMIZATION; REDUCTION;
D O I
10.1109/TAC.2017.2694820
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model instability and poor prediction of long-term behavior are common problems when modeling dynamical systems using nonlinear "black-box" techniques. Direct optimization of the long-term predictions, often called simulation error minimization, leads to optimization problems that are generally nonconvex in the model parameters and suffer from multiple local minima. In this paper, we present methods which address these problems through convex optimization, based on Lagrangian relaxation, dissipation inequalities, contraction theory, and semidefinite programming. We demonstrate the proposed methods with a model order reduction task for electronic circuit design and the identification of a pneumatic actuator from experiment.
引用
收藏
页码:3679 / 3686
页数:8
相关论文
共 50 条
  • [1] Multi-fidelity reduced-order surrogate modelling
    Conti, Paolo
    Guo, Mengwu
    Manzoni, Andrea
    Frangi, Attilio
    Brunton, Steven L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2283):
  • [2] On the role of nonlinear correlations in reduced-order modelling
    Callaham, Jared L.
    Brunton, Steven L.
    Loiseau, Jean-Christophe
    [J]. JOURNAL OF FLUID MECHANICS, 2022, 938
  • [3] Reduced-Order Modelling for Investigating Nonlinear FEM Systems
    Tartaruga, I
    Neild, S. A.
    Hill, T. L.
    Cammarano, A.
    [J]. NONLINEAR DYNAMICS, VOL 1, 2019, : 335 - 350
  • [4] Theoretical Performance Bounds for Reduced-order Linear and Nonlinear Distributed Estimation
    Mohammadi, Arash
    Asif, Amir
    [J]. 2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012, : 3905 - 3911
  • [5] PARAMETERIZATIONS OF STABILIZING COMPENSATORS BY USING REDUCED-ORDER OBSERVERS
    FUJIMORI, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (09) : 1435 - 1439
  • [6] Reduced-Order Nonlinear Observers Via Contraction Analysis and Convex Optimization
    Yi, Bowen
    Wang, Ruigang
    Manchester, Ian R.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4045 - 4060
  • [7] The effect of nonlinear cross-coupling on reduced-order modelling
    Tartaruga, Irene
    Elliott, Alexander
    Hill, Thomas L.
    Neild, Simon A.
    Cammarano, Andrea
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 7 - 17
  • [8] Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis
    Joannin, Colas
    Thouverez, Fabrice
    Chouvion, Benjamin
    [J]. COMPUTERS & STRUCTURES, 2018, 203 : 18 - 33
  • [9] Reduced-order observers for nonlinear systems via contraction analysis and convex optimization
    Yi, Bowen
    Wang, Ruigang
    Manchester, Ian R.
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 4111 - 4116
  • [10] Nonlinear reduced-order modelling for limit-cycle oscillation analysis
    Guanqun Gai
    Sebastian Timme
    [J]. Nonlinear Dynamics, 2016, 84 : 991 - 1009