A linear Watt-Level Power Amplifier Implemented in 28 nm Standard CMOS Technology

被引:0
|
作者
Ossmann, Patrick [1 ]
Fuhrmann, Joerg [2 ,3 ]
Dufrene, Krzysztof [3 ]
Pretl, Harald [3 ]
Springer, Andreas [1 ]
机构
[1] Johannes Kepler Univ Linz, Linz, Austria
[2] Univ Erlangen Nurnberg, Erlangen, Germany
[3] DMCE GmbH & Co KG, Linz, Austria
关键词
3GPP; CMOS power amplifier; two-stage amplifier; stacked-cascode architecture; on-chip matching; nanometre CMOS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A linear two-stage power amplifier (PA) implemented in 28 nm standard CMOS technology is presented. It employs a fully differential input matching network (IMN), a cascoded driver amplifier and a two-stage wideband interstage matching network. To generate Watt-level output power a stacked transistor array operates as transconductance (gm) amplifier. An on-chip output matching network (OMN) performs differential to single-ended conversion. Additional process-voltage-temperature (PVT) compensation and biasing circuitry is integrated. The whole chip has been protected using proper ESD structures. The PA achieves a power-added efficiency (PAE) of 33 % and a saturated output power of 31.2 dBm when operating at 1.75 GHz. Without applying digital predistortion (DPD) ACLR values of <=-25 dBc at 26.5 dBm in-band power can be achieved for UTRA RMC12k2 test signals. When using memoryless DPD the ACLR improves to <= -38 dBc at +/- 5 MHz. Maximum EVM value decreases from <= 6.5 % to <= 1.7 % when using DPD.
引用
收藏
页码:674 / 676
页数:3
相关论文
共 50 条
  • [1] A 28 nm Standard CMOS Watt-Level Power Amplifier for LTE Applications
    Fuhrmann, Joerg
    Ossmann, Patrick
    Dufrene, Krysztof
    Pretl, Harald
    Weigel, Robert
    [J]. 2015 IEEE TOPICAL CONFERENCE ON POWER AMPLIFIERS FOR WIRELESS AND RADIO APPLICATIONS (PAWR), 2015, : 31 - 33
  • [2] Design of a Fully Integrated Two-Stage Watt-Level Power Amplifier Using 28-nm CMOS Technology
    Ossmann, Patrick
    Fuhrmann, Joerg
    Dufrene, Krzysztof
    Fritzin, Jonas
    Moreira, Jose
    Pretl, Harald
    Springer, Andreas
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (01) : 188 - 199
  • [3] Design of a Fully Integrated Two-Stage Watt-Level Power Amplifier Using 28-nm CMOS Technology
    Oßmann, Patrick
    Fuhrmann, Jörg
    Dufrêne, Krzysztof
    Fritzin, Jonas
    Moreira, José
    Pretl, Harald
    Springer, Andreas
    [J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64 (01): : 188 - 199
  • [4] A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS
    Pornpromlikit, Sataporn
    Jeong, Jinho
    Presti, Calogero D.
    Scuderi, Antonino
    Asbeck, Peter M.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (01) : 57 - 64
  • [5] A Fully Integrated Watt-Level Linear 900-MHz CMOS RF Power Amplifier for LTE-Applications
    Francois, Brecht
    Reynaert, Patrick
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (06) : 1878 - 1885
  • [6] A Review of Watt-Level CMOS RF Power Amplifiers
    Johansson, Ted
    Fritzin, Jonas
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (01) : 111 - 124
  • [7] A 1 watt audio amplifier in a standard digital 90-nm CMOS technology
    Becker, R
    Groeneweg, W
    [J]. ESSCIRC 2005: PROCEEDINGS OF THE 31ST EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2005, : 255 - 258
  • [8] A Watt-level Broadband Power Amplifier in GaAs HBT Process
    Zhang, Jincan
    Liu, Bo
    Liu, Min
    Zhang, Liwen
    Wang, Jinchan
    Jin, Hao
    [J]. JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2019, 19 (04) : 357 - 363
  • [9] Watt-Level 21-25-GHz Integrated Doherty Power Amplifier in GaAs Technology
    Ramella, Chiara
    Camarchia, Vittorio
    Piacibello, Anna
    Pirola, Marco
    Quaglia, Roberto
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (05) : 505 - 508
  • [10] A Millimeter-Wave Watt-Level Doherty Power Amplifier in Silicon
    Zhang, Xiaohan
    Li, Sensen
    Chi, Taiyun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (03) : 1674 - 1686