Categorical morita equivalence for group-theoretical categories

被引:40
|
作者
Naidu, Deepak [1 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
基金
美国国家科学基金会;
关键词
group-theoretical categories; tensor categories;
D O I
10.1080/00927870701511996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite tensor category is called pointed if all its simple objects are invertible. We find necessary and sufficient conditions for two pointed semisimple categories to be dual to each other with respect to a module category. Whenever the dual of a pointed semisimple category with respect to a module category is pointed, we give explicit formulas for the Grothendieck ring and for the associator of the dual. This leads to the definition of categorical Morita equivalence on the set of all finite groups and on the set of all pairs (G, omega), where G is a finite group and omega is an element of H-3 (G, k(x)). A group-theoretical and cohomological interpretation of this relation is given. A series of concrete examples of pairs of groups that are categorically Morita equivalent but have nonisomorphic Grothendieck rings are given. In particular, the representation categories of the Drinfeld doubles of the groups in each example are equivalent as braided tensor categories and hence these groups define the same modular data.
引用
收藏
页码:3544 / 3565
页数:22
相关论文
共 50 条
  • [1] On the Equivalence of Module Categories over a Group-Theoretical Fusion Category
    Natale, Sonia
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [2] Group-theoretical graph categories
    Daniel Gromada
    [J]. Journal of Algebraic Combinatorics, 2022, 55 : 591 - 627
  • [3] Group-theoretical graph categories
    Gromada, Daniel
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (02) : 591 - 627
  • [4] Some properties of group-theoretical categories
    Gelaki, Shlomo
    Naidu, Deepak
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (08) : 2631 - 2641
  • [5] Weakly group-theoretical and solvable fusion categories
    Etingof, Pavel
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (01) : 176 - 205
  • [6] Algebraic Structures in Group-theoretical Fusion Categories
    Morales, Yiby
    Muller, Monique
    Plavnik, Julia
    Camacho, Ana Ros
    Tabiri, Angela
    Walton, Chelsea
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 2399 - 2431
  • [7] Algebraic Structures in Group-theoretical Fusion Categories
    Yiby Morales
    Monique Müller
    Julia Plavnik
    Ana Ros Camacho
    Angela Tabiri
    Chelsea Walton
    [J]. Algebras and Representation Theory, 2023, 26 : 2399 - 2431
  • [8] CATEGORIES OF ACTIONS AND MORITA EQUIVALENCE
    ELKINS, BL
    ZILBER, JA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A357 - A357
  • [9] On Lagrangian algebras in group-theoretical braided fusion categories
    Davydov, Alexei
    Simmons, Darren
    [J]. JOURNAL OF ALGEBRA, 2017, 471 : 149 - 175
  • [10] Group-theoretical structure of quantum measurements and equivalence principle
    Camacho, A
    [J]. MODERN PHYSICS LETTERS A, 2000, 15 (22-23) : 1461 - 1470