Extending the lifetime of a quantum bit with error correction in superconducting circuits

被引:625
|
作者
Ofek, Nissim [1 ,2 ]
Petrenko, Andrei [1 ,2 ]
Heeres, Reinier [1 ,2 ]
Reinhold, Philip [1 ,2 ]
Leghtas, Zaki [1 ,2 ,4 ]
Vlastakis, Brian [1 ,2 ]
Liu, Yehan [1 ,2 ]
Frunzio, Luigi [1 ,2 ]
Girvin, S. M. [1 ,2 ]
Jiang, L. [1 ,2 ]
Mirrahimi, Mazyar [1 ,2 ,3 ]
Devoret, M. H. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06510 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA
[3] INRIA Paris, QUANTIC Team, 2 Rue Simone Iff, F-75012 Paris, France
[4] PSL Res Univ, Mines ParisTech, Ctr Automat & Syst, 60 Blvd St Michel, F-75006 Paris, France
基金
美国国家科学基金会;
关键词
QUBIT; INFORMATION; REALIZATION; PHOTON; STATE; CODE;
D O I
10.1038/nature18949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum error correction (QEC) can overcome the errors experienced by qubits1 and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations(2). The 'break-even' point of QEC-at which the lifetime of a qubit exceeds the lifetime of the constituents of the system-has so far remained out of reach(3). Although previous works have demonstrated elements of QEC(4-16), they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrodinger-cat states(17) of a superconducting resonator(18-21). We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the vertical bar 0 >(f) and vertical bar 1 >(f) Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 50 条
  • [1] Extending the lifetime of a quantum bit with error correction in superconducting circuits
    Nissim Ofek
    Andrei Petrenko
    Reinier Heeres
    Philip Reinhold
    Zaki Leghtas
    Brian Vlastakis
    Yehan Liu
    Luigi Frunzio
    S. M. Girvin
    L. Jiang
    Mazyar Mirrahimi
    M. H. Devoret
    R. J. Schoelkopf
    [J]. Nature, 2016, 536 : 441 - 445
  • [2] Bosonic quantum error correction codes in superconducting quantum circuits
    Cai, Weizhou
    Ma, Yuwei
    Wang, Weiting
    Zou, Chang-Ling
    Sun, Luyan
    [J]. FUNDAMENTAL RESEARCH, 2021, 1 (01): : 50 - 67
  • [3] Extending Shor's Quantum Error Correction Circuits Using Quantum Adders
    Shahriar, Shadman
    Al Islam, A. B. M. Alim
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1381 - 1386
  • [4] Realization of three-qubit quantum error correction with superconducting circuits
    Reed, M. D.
    DiCarlo, L.
    Nigg, S. E.
    Sun, L.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. NATURE, 2012, 482 (7385) : 382 - 385
  • [5] Realization of three-qubit quantum error correction with superconducting circuits
    M. D. Reed
    L. DiCarlo
    S. E. Nigg
    L. Sun
    L. Frunzio
    S. M. Girvin
    R. J. Schoelkopf
    [J]. Nature, 2012, 482 : 382 - 385
  • [6] Dissipation-induced continuous quantum error correction for superconducting circuits
    Cohen, Joachim
    Mirrahimi, Mazyar
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [7] Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits
    Kapit, Eliot
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [8] Extending 3-bit Burst Error-Correction Codes With Quadruple Adjacent Error Correction
    Li, Jiaqiang
    Reviriego, Pedro
    Xiao, Liyi
    Argyrides, Costas
    Li, Jie
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (02) : 221 - 229
  • [9] Physical optimization of quantum error correction circuits
    Burkard, G
    Loss, D
    DiVincenzo, DP
    Smolin, JA
    [J]. PHYSICAL REVIEW B, 1999, 60 (16) : 11404 - 11416
  • [10] Extending lifetime of wireless sensor networks using forward error correction
    Donapudi, Suresh Upandra
    Obel, Christian Olesen
    Madsen, Jan
    [J]. 24TH NORCHIP CONFERENCE, PROCEEDINGS, 2006, : 277 - +