Polynomial fusion rings of logarithmic minimal models

被引:6
|
作者
Rasmussen, Jorgen [1 ]
Pearce, Paul A. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
关键词
D O I
10.1088/1751-8113/41/17/175210
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify quotient polynomial rings isomorphic to the recently found fundamental fusion algebras of logarithmic minimal models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Polynomial fusion rings of W-extended logarithmic minimal models
    Rasmussen, Jorgen
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [2] Fusion algebras of logarithmic minimal models
    Rasmussen, Jorgen
    Pearce, Paul A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (45) : 13711 - 13733
  • [3] Fusion rings for degenerate minimal models
    Milas, A
    JOURNAL OF ALGEBRA, 2002, 254 (02) : 300 - 335
  • [4] Logarithmic minimal models
    Pearce, Paul A.
    Rasmussen, Jorgen
    Zuber, Jean-Bernard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [5] Logarithmic superconformal minimal models
    Pearce, Paul A.
    Rasmussen, Jorgen
    Tartaglia, Elena
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [6] Logarithmic limits of minimal models
    Rasmussen, J
    NUCLEAR PHYSICS B, 2004, 701 (03) : 516 - 528
  • [7] Fusion hierarchies, T-systems, and Y-systems of logarithmic minimal models
    Morin-Duchesne, Alexi
    Pearce, Paul A.
    Rasmussen, Jorgen
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [8] Inverse Polynomial Images are Always Sets of Minimal Logarithmic Capacity
    Schiefermayr, Klaus
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 375 - 386
  • [9] Inverse Polynomial Images are Always Sets of Minimal Logarithmic Capacity
    Klaus Schiefermayr
    Computational Methods and Function Theory, 2016, 16 : 375 - 386
  • [10] Fusion rules for the logarithmic N=1 superconformal minimal models II: Including the Ramond sector
    Canagasabey, Michael
    Ridout, David
    NUCLEAR PHYSICS B, 2016, 905 : 132 - 187