Monte Carlo simulations of short-time critical dynamics with a conserved quantity

被引:13
|
作者
Zheng, B [1 ]
Luo, HJ
机构
[1] Univ Halle Wittenberg, FB Phys, D-06099 Halle, Germany
[2] Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China
[3] Univ Siegen, FB Phys, D-57068 Siegen, Germany
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 06期
关键词
D O I
10.1103/PhysRevE.63.066130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With Monte Carlo simulations, we investigate short-time critical dynamics of the three-dimensional antiferromagnetic Ising model with a globally conserved magnetization m(s) (not the order parameter). From the power law behavior of the staggered magnetization (the order parameter), its second moment and the autocorrelation, we determine all static and dynamic critical exponents as well as the critical temperature. The universality class of m(s) = 0 is the same as that without a conserved quantity, but the universality class of nonzero m(s) is different.
引用
收藏
页码:1 / 066130
页数:8
相关论文
共 50 条
  • [1] Monte Carlo simulations of short-time critical dynamics
    Zheng, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (14): : 1419 - 1484
  • [2] Monte Carlo simulations of short-time critical dynamics
    Zheng, B
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 338 - 340
  • [3] Critical dynamics of the Potts model:: short-time Monte Carlo simulations
    da Silva, R
    de Felício, JRD
    [J]. PHYSICS LETTERS A, 2004, 333 (3-4) : 277 - 283
  • [4] Monte Carlo simulations and numerical solutions of short-time critical dynamics
    Zheng, B
    [J]. PHYSICA A, 2000, 283 (1-2): : 80 - 85
  • [6] A Monte Carlo study for the universality in short-time critical dynamics
    Wang, L
    Gu, DW
    Ying, HP
    Ji, DR
    [J]. ACTA PHYSICA SINICA, 2000, 49 (02) : 344 - 348
  • [7] Monte Carlo simulation of short-time critical dynamics for the XY-model
    Schulke, L
    Zheng, B
    Okano, K
    Yamagishi, K
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 477 - 479
  • [8] Monte Carlo simulations of critical dynamics with conserved order parameter
    Zheng, B
    [J]. PHYSICS LETTERS A, 2000, 277 (4-5) : 257 - 261
  • [9] Monte Carlo study of critical scaling and universality in non-equilibrium short-time dynamics
    Zhang, JB
    Wang, L
    Gu, DW
    Ying, HP
    Ji, DR
    [J]. PHYSICS LETTERS A, 1999, 262 (2-3) : 226 - 233
  • [10] Critical behavior of nonequilibrium models in short-time Monte Carlo simulations -: art. no. 067701
    da Silva, R
    Dickman, R
    de Felício, JRD
    [J]. PHYSICAL REVIEW E, 2004, 70 (06): : 067701/1 - 067701/4