Rigidity Results for Riemannian Spin Manifolds with Foliated Boundary

被引:0
|
作者
El Chami, Fida [1 ]
Ginoux, Nicolas [2 ]
Habib, Georges [1 ]
Nakad, Roger [3 ]
机构
[1] Lebanese Univ, Dept Math, Fac Sci 2, POB 90656, Fanar Matn, Lebanon
[2] Univ Lorraine, Inst Elie Cartan Lorraine, Site Metz,Rue Augustin Fresnel, F-57070 Metz, France
[3] Notre Dame Univ Louaize, Fac Nat & Appl Sci, Dept Math & Stat, POB 72, Zouk Mikael, Lebanon
关键词
Manifolds with boundary; spin(c) structures; Riemannian flows; basic Dirac equation; Kahler-Einstein manifolds; parallel spinors; REAL HYPERSURFACES; KILLING SPINORS; DIRAC; LAPLACIAN; OPERATORS; PARALLEL;
D O I
10.1007/s00025-017-0734-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Riemannian spin manifold whose boundary is endowed with a Riemannian flow, we show that any solution of the basic Dirac equation satisfies an integral inequality depending on geometric quantities, such as the mean curvature and the O'Neill tensor. We then characterize the equality case of the inequality when the ambient manifold is a domain of a Kahler-Einstein manifold or a Riemannian product of a Kahler-Einstein manifold with (or with the circle ).
引用
收藏
页码:1773 / 1806
页数:34
相关论文
共 50 条
  • [1] Rigidity results for spin manifolds with foliated boundary
    El Chami F.
    Ginoux N.
    Habib G.
    Nakad R.
    [J]. Journal of Geometry, 2016, 107 (3) : 533 - 555
  • [2] Rigidity of Compact Riemannian Spin Manifolds with Boundary
    Simon Raulot
    [J]. Letters in Mathematical Physics, 2008, 86 : 177 - 192
  • [3] Rigidity of Compact Riemannian Spin Manifolds with Boundary
    Raulot, Simon
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (2-3) : 177 - 192
  • [4] Rigidity of transversally biharmonic maps between foliated Riemannian manifolds
    Ohno, Shinji
    Sakai, Takashi
    Urakawa, Hajime
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (03) : 637 - 654
  • [5] Harmonic maps of foliated Riemannian manifolds
    Dragomir, Sorin
    Tommasoli, Andrea
    [J]. GEOMETRIAE DEDICATA, 2013, 162 (01) : 191 - 229
  • [6] Harmonic maps of foliated Riemannian manifolds
    Sorin Dragomir
    Andrea Tommasoli
    [J]. Geometriae Dedicata, 2013, 162 : 191 - 229
  • [7] ON TRANSVERSALLY HARMONIC MAPS OF FOLIATED RIEMANNIAN MANIFOLDS
    Jung, Min Joo
    Jung, Seoung Dal
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (05) : 977 - 991
  • [8] HERMITIAN METRIC RIGIDITY ON COMPACT FOLIATED MANIFOLDS
    QUIROGA, R
    [J]. GEOMETRIAE DEDICATA, 1995, 57 (03) : 305 - 315
  • [9] SOME ISOMETRIC EMBEDDING AND RIGIDITY RESULTS FOR RIEMANNIAN-MANIFOLDS
    BERGER, E
    BRYANT, R
    GRIFFITHS, P
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (08): : 4657 - 4660
  • [10] Reshetnyak Rigidity for Riemannian Manifolds
    Kupferman, Raz
    Maor, Cy
    Shachar, Asaf
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (01) : 367 - 408