Mycotoxins in Tea ((Camellia sinensis (L.) Kuntze)): Contamination and Dietary Exposure Profiling in the Chinese Population

被引:6
|
作者
Zhou, Haiyan [1 ]
Yan, Zheng [1 ]
Wu, Aibo [1 ]
Liu, Na [1 ]
机构
[1] Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, SIBS UGENT SJTU Joint Lab Mycotoxin Res, CAS Key Lab Nutr Metab & Food Safety, Shanghai 200030, Peoples R China
关键词
mycotoxins; tea; dietary exposure; risk assessment; RISK-ASSESSMENT; UPLC-MS/MS; SUPPLEMENTS;
D O I
10.3390/toxins14070452
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Tea is popular worldwide with multiple health benefits. It may be contaminated by the accidental introduction of toxigenic fungi during production and storage. The present study focuses on potential mycotoxin contamination in tea and the probable dietary exposure assessments associated with consumption. The contamination levels for 16 mycotoxins in 352 Chinese tea samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Average concentrations of almost all mycotoxins in tea samples were below the established regulations, except for ochratoxin A in the dark tea samples. A risk assessment was performed for the worst-case scenarios by point evaluation and Monte Carlo assessment model using the obtained mycotoxin levels and the available green, oolong, black, and dark tea consumption data from cities in China. Additionally, we discuss dietary risk through tea consumption as beverages and dietary supplements. In conclusion, there is no dietary risk of exposure to mycotoxins through tea consumption in the Chinese population.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tissue culture of tea [Camellia sinensis (L.) O. Kuntze]
    Dodd, W. A.
    International Journal of Tropical Agriculture, 1994, 12 (3-4):
  • [2] Micropropagation of tea (Camellia sinensis (L.) O.!Kuntze) using Thidiazuron
    Mondal, TK
    Bhattacharya, A
    Sood, A
    Ahuja, PS
    PLANT GROWTH REGULATION, 1998, 26 (01) : 57 - 61
  • [3] Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)
    Morita, Akio
    Yanagisawa, Osamu
    Takatsu, Satoshi
    Maeda, Setsuko
    Hiradate, Syuntaro
    PHYTOCHEMISTRY, 2008, 69 (01) : 147 - 153
  • [4] Modelling and prediction of antioxidant properties of tea (Camellia sinensis (L.) Kuntze) leaf
    Makanjuola, Solomon Akinremi
    Enujiugha, Victor Ndigwe
    Omoba, Olufunmilayo Sade
    Sanni, David Morakinyo
    SCIENTIFIC AFRICAN, 2020, 8
  • [5] Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review
    Mainaak Mukhopadhyay
    Tapan K. Mondal
    Pradeep K. Chand
    Plant Cell Reports, 2016, 35 : 255 - 287
  • [6] Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using Thidiazuron
    Tapan Kumar Mondal
    Amita Bhattacharya
    Anil Sood
    Paramvir Singh Ahuja
    Plant Growth Regulation, 1998, 26 : 57 - 61
  • [7] Genes underlying cold acclimation in the tea plant (Camellia sinensis (L.) Kuntze)
    Samarina, L. S.
    Malyukova, L. S.
    Gvasaliya, M., V
    Efremov, A. M.
    Malyarovskaya, V., I
    Loshkareva, S., V
    Tuov, M. T.
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2019, 23 (08): : 958 - 963
  • [8] Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review
    Mukhopadhyay, Mainaak
    Mondal, Tapan K.
    Chand, Pradeep K.
    PLANT CELL REPORTS, 2016, 35 (02) : 255 - 287
  • [9] Effect of Liming of Tea Seedling (Camellia sinensis (L.)O. Kuntze)
    Chokami, Ali Fatemi
    Gonbad, Reza Azadi
    ASIAN JOURNAL OF CHEMISTRY, 2009, 21 (04) : 3301 - 3303
  • [10] Metabolite profiling of tea (Camellia sinensis L.) leaves in winter
    Shen, Jiazhi
    Wang, Yu
    Chen, Changsong
    Ding, Zhaotang
    Hu, Jianhui
    Zheng, Chao
    Li, Yuchen
    SCIENTIA HORTICULTURAE, 2015, 192 : 1 - 9