Multiple Integrals under Differential Constraints: Two-Scale Convergence and Homogenization

被引:21
|
作者
Fonseca, Irene [1 ]
Kroemer, Stefan [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Cologne, Math Inst, D-50923 Cologne, Germany
基金
美国国家科学基金会;
关键词
Gamma-convergence; two-scale convergence; homogenization; equiintegrability; PERIODIC UNFOLDING METHOD; REITERATED HOMOGENIZATION; A-QUASICONVEXITY; RELAXATION; FUNCTIONALS; CALCULUS;
D O I
10.1512/iumj.2010.59.4249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two-scale techniques are developed for sequences of maps {u(k)} subset of L(p) (Omega; R(M)) satisfying a linear differential constraint Au(k) = 0. These, together with F-convergence arguments and using the unfolding operator, provide a homogenization result for energies of the type F(epsilon)(u):= integral(Omega) f (x, x/epsilon, u(x)) dx with u is an element of L(p) (Omega; R(M)), Au = 0, that generalizes current results in the case where A = curl.
引用
下载
收藏
页码:427 / 457
页数:31
相关论文
共 50 条