Comparative study on optimising the EKF for speed estimation of an induction motor using simulated annealing and genetic algorithm

被引:6
|
作者
Buyamin, S. [1 ]
Finch, J. W. [1 ]
机构
[1] Newcastle Univ, Power Elect Drives & Machines Grp, Newcastle Upon Tyne, Tyne & Wear, England
关键词
D O I
10.1109/IEMDC.2007.383684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a comparative study for optimising a speed observer in induction motor sensorless control using a stochastic method. A new approach of optimising the performance of the Extended Kalman Filter using Simulated Annealing is compared with use of a Genetic Algorithm. Although the EKF is capable of estimating the motor states and speed simultaneously, in this case only the rotor speed is estimated and observed. The performance of speed estimation using both methods is compared with respect to various speed ranges, robustness relatively to motor parameter sensitivity and load torque condition. The optimisation techniques are illustrated through a MATLAB/Simulink implementation on a constant WIT controller under various operating conditions.
引用
收藏
页码:1689 / +
页数:2
相关论文
共 50 条
  • [1] Application of genetic algorithms in EKF for speed estimation of an induction motor
    Cai, L
    Zhang, YH
    Zhang, ZC
    Liu, CY
    Lu, ZY
    [J]. PESC'03: 2003 IEEE 34TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 345 - 349
  • [2] Estimation of speed, rotor flux, and rotor resistance in cage induction motor using the EKF algorithm
    Ouhrouche, Mohand A.
    [J]. International Journal of Power and Energy Systems, 2002, 22 (02): : 103 - 109
  • [3] Stator flux based speed estimation of induction motor drive using EKF
    Thongam, JS
    Thoudam, VPS
    [J]. IETE JOURNAL OF RESEARCH, 2004, 50 (03) : 191 - 197
  • [4] A comparative study of shape optimization of SRM using genetic algorithm and simulated annealing
    Naayagi, RT
    Kamaraj, V
    [J]. INDICON 2005 Proceedings, 2005, : 596 - 599
  • [5] A Comparative Study on Adaptive EKF Observers for State and Parameter Estimation of Induction Motor
    Zerdali, Emrah
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2020, 35 (03) : 1443 - 1452
  • [6] Induction Motor Efficiency Estimation using Genetic Algorithm
    Banan, Khalil
    Sharifian, Mohammad B. B.
    Mohammadi, Jafar
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 3, 2005, 3 : 152 - 156
  • [7] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278
  • [8] Nonintrusive efficiency estimation of induction motor using EKF
    Yu Hong-xia
    Hu Jing-tao
    [J]. 2011 INTERNATIONAL CONFERENCE ON COMPUTER APPLICATION AND EDUCATION TECHNOLOGY (ICCAET 2011), 2011, : 217 - 220
  • [9] Induction motor Parameter Estimation Using Hybrid Genetic Algorithm
    Sundareswaran, K.
    Shyam, H. N.
    Palani, S.
    James, Joby
    [J]. IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 74 - +
  • [10] Using NSGA II Multiobjective Genetic Algorithm for EKF-based Estimation of Speed and Electrical Torque in AC Induction Machines
    Alsofyani, I. M.
    Idris, N. R. N.
    Jannati, M.
    Anbaran, S. A.
    Alamri, Y. A.
    [J]. 2014 IEEE 8TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO), 2014, : 396 - 401