Discontinuous bubble scheme for elliptic problems with jumps in the solution

被引:28
|
作者
Chang, Kwang S. [1 ]
Kwak, D. Y. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
关键词
Jumps in the solution; Discontinuous bubble; Immersed interface; Immersed finite element method; Uniform grid; Robust convergence; IMMERSED INTERFACE METHOD; FINITE-ELEMENT SPACE; APPROXIMATION CAPABILITY; EQUATIONS; FLOW; ELECTROPORATION; COEFFICIENTS;
D O I
10.1016/j.cma.2010.06.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a new numerical method to solve an elliptic problem with jumps both in the solution and derivative along an interface. By considering a suitable function which has the same jumps as the solution, we transform the problem into one without jumps. Then we apply the immersed finite element method in which we allow uniform meshes so that the interface may cut through elements to discretize the problem as introduced in [1-3]. Some convenient way of approximating the jumps of the solution by piecewise linear functions is suggested. Our method can also handle the case when the interface passes through grid points. We believe this paper presents the first resolution of such cases. Numerical experiments for various problems show second-order convergence in L-2 and first order in H-1-norms. Moreover, the convergence order is very robust for all problems tested. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:494 / 508
页数:15
相关论文
共 50 条