Characterization and Modeling of Self-Heating in Nanometer Bulk-CMOS at Cryogenic Temperatures

被引:29
|
作者
Hart, P. A. [1 ,2 ]
Babaie, M. [1 ]
Vladimirescu, A. [1 ,2 ,3 ,4 ]
Sebastiano, F. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CD Delft, Netherlands
[2] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[3] ISEP, Dept Micronano Elect & Radio Commun, F-75006 Paris, France
[4] Univ Calif Berkeley, Berkeley Wireless Res Ctr, Berkeley, CA 94708 USA
关键词
Temperature measurement; Temperature sensors; Logic gates; Cryogenics; Qubit; Heating systems; Silicon; CMOS; cryogenic electronics; modeling; MOSFET; self-heating; THERMAL-CONDUCTIVITY; TRANSISTORS; DIODE; MOSFETS; SENSOR;
D O I
10.1109/JEDS.2021.3116975
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a self-heating study of a 40-nm bulk-CMOS technology in the ambient temperature range from 300 K down to 4.2 K. A custom test chip was designed and fabricated for measuring both the temperature rise in the MOSFET channel and in the surrounding silicon substrate, using the gate resistance and silicon diodes as sensors, respectively. Since self-heating depends on factors such as device geometry and power density, the test structure characterized in this work was specifically designed to resemble actual devices used in cryogenic qubit control ICs. Severe self-heating was observed at deep-cryogenic ambient temperatures, resulting in a channel temperature rise exceeding 50 K and having an impact detectable at a distance of up to 30 mu m from the device. By extracting the thermal resistance from measured data at different temperatures, it was shown that a simple model is able to accurately predict channel temperatures over the full ambient temperature range from deep-cryogenic to room temperature. The results and modeling presented in this work contribute towards the full self-heating-aware IC design-flow required for the reliable design and operation of cryo-CMOS circuits.
引用
收藏
页码:891 / 901
页数:11
相关论文
共 50 条
  • [1] Modeling Self-Heating Effects in Nanometer SOI Devices at Cryogenic Temperatures
    Mendez-V, J.
    Vasileska, D.
    Raleva, K.
    Gutierrez, E. A.
    [J]. 2022 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC), 2022,
  • [2] Nanometer CMOS Characterization and Compact Modeling at Deep-Cryogenic Temperatures
    Incandela, R. M.
    Song, L.
    Homulle, H. A. R.
    Sebastiano, F.
    Charbon, E.
    Vladimirescu, A.
    [J]. 2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2017, : 58 - 61
  • [3] Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures
    Incandela, Rosario M.
    Song, Lin
    Homulle, Harald
    Charbon, Edoardo
    Vladimirescu, Andrei
    Sebastiano, Fabio
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01): : 996 - 1006
  • [4] In Situ Monitoring Technique of Self-Heating in Bulk MOSFETs at Cryogenic Temperatures using Subthreshold Current
    Ichikawa, Masayuki
    Tanaka, Takahisa
    Uchida, Ken
    Miyao, Tomohisa
    Tada, Munehiro
    Ishikuro, Hiroki
    [J]. 2022 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC), 2022,
  • [5] Characterization and Model Validation of Mismatch in Nanometer CMOS at Cryogenic Temperatures
    't Hart, P. A.
    van Dijk, J. P. G.
    Babaie, M.
    Charbon, E.
    Vladimircscu, A.
    Sebastiano, F.
    [J]. 2018 48TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2018, : 246 - 249
  • [6] Self-Heating Effect in a 65 nm MOSFET at Cryogenic Temperatures
    Artanov, Anton A.
    Gutierrez-D, Edmundo A.
    Cabrera-Galicia, Alfonso R.
    Kruth, Andre
    Degenhardt, Carsten
    Durini, Daniel
    Mendez-V, Jairo
    van Waasen, Stefan
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (03) : 900 - 904
  • [7] Improved self-heating extraction with RF technique at cryogenic temperatures
    Vanbrabant, Martin
    Raskin, Jean-Pierre
    Kilchytska, Valeriya
    [J]. SOLID-STATE ELECTRONICS, 2023, 207
  • [8] Self-Heating in 28 FDSOI UTBB MOSFETs at Cryogenic Temperatures
    Nyssens, Lucas
    Halder, Arka
    Esfeh, Babak Kazemi
    Planes, Nicolas
    Haond, Michel
    Flandre, Denis
    Raskin, Jean-Pierre
    Kilchytska, Valeriya
    [J]. 49TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2019), 2019, : 162 - 165
  • [9] Experimental Analysis and Modeling of Self-Heating and Thermal Coupling in 28 nm FD-SOI CMOS Transistors Down to Cryogenic Temperatures
    Bergamaschi, Flavio Enrico
    Frutuoso, Tadeu Mota
    Paz, Bruna Cardoso
    Billiot, Gerard
    Jansen, Aloysius G. M.
    Galy, Phillipe
    Vincent, Emmanuel
    Gaillard, Fred
    Duriez, Blandine
    Casse, Mikael
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2598 - 2604
  • [10] Modeling Self-Heating Effects in Advanced CMOS Nodes
    Arabi, M.
    Cros, A.
    Federspiel, X.
    Ndiaye, C.
    Huard, V
    Rafik, M.
    [J]. 2018 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2018,