Poly(ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (TIPS)

被引:69
|
作者
Roh, Il Juhn [1 ]
Ramaswamy, Senthilkumar [2 ]
Krantz, William B. [3 ]
Greenberg, Alan R. [1 ]
机构
[1] Univ Colorado, Dept Mech Engn, Membrane Appl Sci & Technol Ctr, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Membrane Appl Sci & Technol Ctr, Boulder, CO 80309 USA
[3] Nanyang Technol Univ, Dept Civil & Environm Engn, Singapore Membrane Technol Ctr, Singapore 639798, Singapore
基金
美国国家科学基金会;
关键词
Membranes; ECTFE; TIPS; Membrane casting; Membrane morphology; Fluoropolymer; NUCLEATING-AGENT ADDITION; CRYSTALLIZATION KINETICS; ISOTACTIC POLYPROPYLENE; MICROPOROUS MEMBRANES; POROUS STRUCTURE; ISOTHERMAL CRYSTALLIZATION; POLYETHYLENE MEMBRANES; POLYPHENYLENE SULFIDE; INVERSION PROCESS; MOLECULAR-WEIGHT;
D O I
10.1016/j.memsci.2010.06.042
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Poly(ethylene chlorotrifluoroethylene) (ECTFE) is a 1 1 alternating copolymer of ethylene and chlorotrifluoroethylene that offers excellent resistance in chemically and thermally challenging environments. ECTFE membranes with a variety of microstructures have been fabricated via thermally induced phase separation (TIPS) with dibutyl phthalate (DBP) as the diluent A continuous flat sheet extrusion apparatus with a double rotating drum was used that permitted controlling both the casting solution thickness and axial tension on the nascent membrane Initial compositions of ECTFE/DBP solutions in the liquid-liquid region of the binary phase diagram were chosen, resulting in membranes with an interconnected pore structure The effects of several important process parameters were studied to determine their effect on the structure and properties of the membrane The parameters evaluated included the initial ECTFE concentration, cooling rate, membrane thickness, co-extrusion of diluent, and stretching of the nascent membrane The resulting membranes were characterized using SEM, porometry, and permeation measurements. For the range of process parameters studied. ECTFE membranes exhibited a decrease in surface porosity with increasing initial polymer concentration and cooling rate The effect of membrane thickness on the permeation flux was not significant. Co-extrusion of diluent increased the surface porosity and eliminated the dense skin that was otherwise present under rapid cooling conditions Subsequent stretching of the nascent membrane resulted in a more open structure and a significant increase in the permeation flux (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [1] Fabrication and properties of poly(ethylene chlorotrifluoroethylene) membranes via thermally induced phase separation (TIPS)
    Pan, Jian
    Xiao, Changfa
    Huang, Qinglin
    Wang, Chun
    Liu, Hailiang
    RSC ADVANCES, 2015, 5 (56): : 45249 - 45257
  • [2] Membrane formation via thermally induced phase separation (TIPS): Model development and validation
    Li, Dongmei
    Krantz, William B.
    Greenberg, Alan R.
    Sani, Robert L.
    JOURNAL OF MEMBRANE SCIENCE, 2006, 279 (1-2) : 50 - 60
  • [3] Formation of porous poly(ethylene-co-vinyl alcohol) membrane via thermally induced phase separation
    Matsuyama, H
    Iwatani, T
    Kitamura, Y
    Tearamoto, M
    Sugoh, N
    JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 79 (13) : 2449 - 2455
  • [4] Preparation of Ethylene Chlorotrifluoroethylene Co-polymer Membranes via Thermally Induced Phase Separation
    Zhou Bo
    Lin Ya-Kai
    Ma Wen-Zhong
    Tang Yuan-Hui
    Tian Ye
    Wang Xiao-Lin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2012, 33 (11): : 2585 - 2590
  • [5] PVDF membrane formation via thermally induced phase separation
    Su, Yi
    Chen, Cuixian
    Li, Yongguo
    Li, Jiding
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2007, 44 (01): : 99 - 104
  • [6] Membrane Formation of Poly(vinylidene fluoride)/Poly(methyl methacrylate)/Diluents via Thermally Induced Phase Separation
    Ma, Wenzhong
    Chen, Shuangjun
    Zhang, Jun
    Wang, Xiaolin
    Miao, Wenhu
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 111 (03) : 1235 - 1245
  • [7] Effect of poly(ethylene glycol) on structure and properties of polypropylene membrane formed via thermally induced phase separation
    Xi, Z. Y.
    Yang, Y. Q.
    Wang, Y. J.
    Zhao, H.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 1636 - 1638
  • [8] Effect of diluents on membrane formation via thermally induced phase separation
    Matsuyama, H
    Teramoto, M
    Kudari, S
    Kitamura, Y
    JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 82 (01) : 169 - 177
  • [9] Effect of diluent on poly(ethylene-co-vinyl alcohol) hollow-fiber membrane formation via thermally induced phase separation
    Shan, MX
    Matsuyama, H
    Teramoto, M
    Okuno, J
    Lloyd, DR
    Kubota, N
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 95 (02) : 219 - 225
  • [10] Poly(L-lactic acid) Microfiltration Membrane Formation via Thermally Induced Phase Separation with Drying
    Tanaka, Takaaki
    Ueno, Masatou
    Watanabe, Youhei
    Kouya, Tomoaki
    Taniguchi, Masayuki
    Lloyd, Douglas R.
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2011, 44 (07) : 467 - 475