Index Tracking by Using Sparse Support Vector Regression

被引:1
|
作者
Teng, Yue [1 ]
Yang, Li [2 ]
Yuan, Kunpeng [2 ]
Yu, Bo [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Sci, Panjin 124221, Peoples R China
基金
中国国家自然科学基金;
关键词
Index tracking; Sparse support vector regression; Proximal alternating linearized minimization method; Cardinality constraints; MINIMIZATION; CONSTRAINTS; NONCONVEX;
D O I
10.1007/978-3-319-67777-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a sparse support vector regression (SVR) model and its solution method are considered for the index tracking problem. The sparse SVR model is structured by adding a cardinality constraint in a epsilon-SVR model and the piecewise linear functions are used to simplify the model. In addition, for simplifying the parameter selection of the model a sparse variation of the v-SVR model is considered too. The two models are solved by utilizing the penalty proximal alternating linearized minimization (PALM) method and the structures of the two models satisfy the convergence conditions of the penalty PALM method. The numerical results with practical data sets demonstrate that for the fewer sample data the sparse SVR models have better generalization ability and stability especially for the large-scale problems.
引用
收藏
页码:293 / 315
页数:23
相关论文
共 50 条
  • [1] A method for sparse support vector regression
    Ertin, E
    Potter, LC
    [J]. Intelligent Computing: Theory and Applications III, 2005, 5803 : 24 - 30
  • [2] Sparse Least Squares Support Vector Regression via Multiresponse Sparse Regression
    Vieira, David Clifte da S.
    Rocha Neto, Ajalmar R.
    Rodrigues, Antonio Wendell de O.
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3218 - 3225
  • [3] Target Tracking Using Particle Filters With Support Vector Regression
    Kabaoglu, Nihat
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (05) : 2569 - 2573
  • [4] Sparse online greedy support vector regression
    Engel, Y
    Mannor, S
    Meir, R
    [J]. MACHINE LEARNING: ECML 2002, 2002, 2430 : 84 - 96
  • [5] Hardgrove grindability index prediction using support vector regression
    Rao, B. Venkoba
    Gopalakrishna, S. J.
    [J]. INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2009, 91 (1-2) : 55 - 59
  • [6] Sparse ε-tube support vector regression by active learning
    Ceperic, Vladimir
    Gielen, Georges
    Baric, Adrijan
    [J]. SOFT COMPUTING, 2014, 18 (06) : 1113 - 1126
  • [7] Improved sparse twin support vector regression algorithm
    College of Automation, Harbin Engineering University, Harbin 150001, China
    [J]. Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2012, 9 (1940-1945):
  • [8] Melt index prediction by support vector regression
    Ge, Long
    Shi, Jian
    Zhu, Peiyi
    [J]. 2016 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2016, : 60 - 63
  • [9] Speaker identification and verification using support vector machines and sparse kernel logistic regression
    Katz, Marcel
    Krueger, Sven E.
    Schaffoener, Martin
    Andelic, Edin
    Wendemuth, Andreas
    [J]. ADVANCES IN MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2006, 4153 : 176 - 184
  • [10] Sparse multiple kernel for least square support vector regression
    [J]. Zhong, P. (zping@cau.edu.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):