A novel adaptive Gaussian mixture model for background subtraction

被引:0
|
作者
Cheng, J [1 ]
Yang, J [1 ]
Zhou, Y [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background subtraction is a typical approach to foreground segmentation by comparing each new frame with a learned model of the scene background in image sequences taken from a static camera. In this paper, we propose a flexible method to estimate the background model with the finite Gaussian mixture model. A stochastic approximation procedure is used to recursively estimate the parameters of the Gaussian mixture model, and to simultaneously obtain the asymptotically optimal number of the mixture components. The experimental results show our method is efficient and effective.
引用
收藏
页码:587 / 593
页数:7
相关论文
共 50 条
  • [1] Improved adaptive Gaussian mixture model for background subtraction
    Zivkovic, Z
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 28 - 31
  • [2] Background Subtraction Based on Gaussian Mixture Model
    Liu, Defang
    Deng, Ming
    Wang, Daimu
    [J]. MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 2021 - 2026
  • [3] Collaborative Gaussian mixture model for background subtraction
    Jiang, Yongxin
    Jin, Xing
    Tang, Jun
    Zhang, Zhiyou
    [J]. 2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 254 - 258
  • [4] Target Detection Algorithm Based on Gaussian Mixture Background Subtraction Model
    Wang, Kejun
    Liang, Ying
    Xing, Xianglei
    Zhang, Rongyi
    [J]. PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT INFORMATION PROCESSING, 2015, 336 : 439 - 447
  • [5] BMOG: boosted Gaussian Mixture Model with controlled complexity for background subtraction
    Martins, Isabel
    Carvalho, Pedro
    Corte-Real, Luis
    Alba-Castro, Jose Luis
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (03) : 641 - 654
  • [6] BMOG: boosted Gaussian Mixture Model with controlled complexity for background subtraction
    Isabel Martins
    Pedro Carvalho
    Luís Corte-Real
    José Luis Alba-Castro
    [J]. Pattern Analysis and Applications, 2018, 21 : 641 - 654
  • [7] Adaptive Fast Gaussian Background Subtraction Algorithm
    Zhang, Fan
    Yang, Lei
    Zhang, Guangwen
    [J]. PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 766 - 771
  • [8] Background Subtraction using Spatial Mixture of Gaussian Model with Dynamic Shadow Filtering
    Rumaksari, Atyanta N.
    Sumpeno, Surya
    Wibawa, Adhi D.
    [J]. 2017 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATIONS (ISITIA), 2017, : 296 - 301
  • [9] Three-level GPU Accelerated Gaussian Mixture Model for Background Subtraction
    Li, Yin
    Wang, Guijin
    Lin, Xinggang
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS X AND PARALLEL PROCESSING FOR IMAGING APPLICATIONS II, 2012, 8295
  • [10] Fusion-based Gaussian mixture model for background subtraction from videos
    Subetha, T.
    Chitrakala, S.
    Theja, M. Uday
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2021, 66 (01) : 63 - 73