共 50 条
Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors
被引:4
|作者:
Han, Yawen
[1
]
Xing, Wanli
[2
]
Hao, Hongchang
[3
]
Du, Xin
[1
]
Liu, Chongyang
[4
]
机构:
[1] Zhejiang Sci Tech Univ, Sch Econ & Management, 928,2nd St, Hangzhou 310018, Peoples R China
[2] China Geol Survey, Res Dev Ctr, 45 Fuwai St, Beijing 100037, Peoples R China
[3] China Univ Geosci, Sch Earth Sci & Resources, 29 Xueyuan Rd, Beijing 100083, Peoples R China
[4] China Southern Power Grid Co, Inst Energy Dev, 11 Kexiang Rd, Guangzhou 510700, Peoples R China
基金:
中国国家自然科学基金;
关键词:
metal transfer;
GHG transfer;
quasi-input-output model;
quadratic assignment procedure;
power system decarbonization;
STRUCTURAL PATH-ANALYSIS;
CO2;
EMISSIONS;
INTERNATIONAL-TRADE;
INPUT-OUTPUT;
MATERIAL FLOWS;
ENERGY;
NETWORK;
SECTORS;
MODEL;
TRANSITION;
D O I:
10.3390/su14148898
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
With the increasing proportion of low-carbon power in electricity generation mix, power generation will be transformed from carbon-intensive to metal-intensive. In this context, metal and GHG transfers embodied in electricity transmission of China from 2015 to 2019 are quantified by the Quasi-Input-Output model. Combined with complex network theory, we have distinguished whether metal and GHG transfers show different trends as electricity trade changes. Driving factors contributing to forming the metal and GHG transfers are also explored based on the Quadratic Assignment Procedure. The results show that the electricity trade change has strengthened the metal transfer network significantly, while several key links in the GHG transfer network have weakened. Moreover, we find provincial differences in low-carbon electricity investment contributing to the metal transfer while affecting the GHG transfer little. The above facts imply an expanding embodied metal transfer in the future and shed light on policy making for power system decarbonization.
引用
收藏
页数:19
相关论文