Analysis of algorithms for radial basis function neural network

被引:0
|
作者
Stastny, Jiri [1 ]
Skorpil, Vladislav [2 ]
机构
[1] Brno Univ Technol, Dept Comp Sci & Automat, Purkynova 118, Brno 61200, Czech Republic
[2] Brno Univ Technol, Dept Telecommun, Bron, France
来源
关键词
radial basis function; learning algorithm; neuron; hidden layer;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the analysis of algorithms for the hidden layer construction of network and for learning of the Radial Basis Function neural Network (RBFN). We compared results obtained by using of learning algorithms LMS (Least Mean Square) and Gradient Algorithms (GA) and results are obtained by using of algorithms APC-III and K-means for hidden layer contruction of neural network. The principles and algorithms given below have been used in an application for object classification that was developed at Brno University of Technology. This solution is suitable for the research of personal wireless communications and similar systems.
引用
收藏
页码:54 / +
页数:3
相关论文
共 50 条
  • [1] Radial Basis Function Neural Network
    Matera, F
    [J]. SUBSTANCE USE & MISUSE, 1998, 33 (02) : 317 - 334
  • [2] A novel radial basis function neural network for discriminant analysis
    Yang, Zheng Rong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (03): : 604 - 612
  • [3] Bayesian radial basis function neural network
    Yang, ZR
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 211 - 219
  • [4] The Normalized Radial Basis Function neural network
    Heimes, F
    van Heuveln, B
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1609 - 1614
  • [5] Median radial basis function neural network
    Bors, AG
    Pitas, I
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (06): : 1351 - 1364
  • [6] Enhanced Radial Basis Function Neural Network Design Using Parallel Evolutionary Algorithms
    Parras-Gutierrez, Elisabet
    Isabel Garcia-Arenas, Maribel
    Rivas-Santos, Victor M.
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 : 269 - +
  • [7] Considering radial basis function neural network for effective solution generation in metaheuristic algorithms
    Cuevas, Erik
    Ascencio-Pina, Cesar Rodolfo
    Perez, Marco
    Morales-Castaneda, Bernardo
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] A sigmoidal radial basis function neural network for function approximation
    Tsai, JR
    Chung, PC
    Chang, CI
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 496 - 501
  • [9] The ridge method in a radial basis function neural network
    Rolando J. Praga-Alejo
    David S. González-González
    Mario Cantú-Sifuentes
    Luis M. Torres-Treviño
    [J]. The International Journal of Advanced Manufacturing Technology, 2015, 79 : 1787 - 1796
  • [10] Multi-objective hybrid evolutionary algorithms for radial basis function neural network design
    Qasem, Sultan Noman
    Shamsuddin, Siti Mariyam
    Zain, Azlan Mohd
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 27 : 475 - 497