Algorithms for the Min-max Regret Generalized Assignment Problem with Interval Data

被引:0
|
作者
Wu, W. [1 ]
Iori, M. [2 ]
Martello, S. [3 ]
Yagiura, M. [1 ]
机构
[1] Nagoya Univ, Nagoya, Aichi, Japan
[2] Univ Modena & Reggio Emilia, Reggio Emilia, Italy
[3] Univ Bologna, Bologna, Italy
关键词
generalized assignment problem; min-max regret; branch-and-cut; Benders' decomposition; variable fixing; Lagrangian relaxation; heuristics;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many real life optimization problems do not have accurate estimates of the problem parameters at the optimization phase. For this reason, the min-max regret criteria are widely used to obtain robust solutions. In this paper we consider the generalized assignment problem (GAP) with min-max regret criterion under interval costs. We show that the decision version of this problem is Sigma(p)(2)-complete. We present two heuristic methods: a fixed-scenario approach and a dual substitution algorithm. For the fixed-scenario approach, we show that solving the classical GAP under a median-cost scenario leads to a solution of the min-max regret GAP whose objective function value is within twice the optimal value. We also propose exact algorithms, including a Benders' decomposition approach and branch-and-cut methods which incorporate various methodologies, including Lagrangian relaxation and variable fixing. The resulting Lagrangian-based branch-and-cut algorithm performs satisfactorily on benchmark instances.
引用
收藏
页码:734 / 738
页数:5
相关论文
共 50 条
  • [1] Exact and heuristic algorithms for the interval min-max regret generalized assignment problem
    Wu, Wei
    Iori, Manuel
    Martello, Silvano
    Yagiura, Mutsunori
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 125 : 98 - 110
  • [2] Heuristic and Exact Algorithms for the Interval Min-Max Regret Knapsack Problem
    Furini, Fabio
    Iori, Manuel
    Martello, Silvano
    Yagiura, Mutsunori
    [J]. INFORMS JOURNAL ON COMPUTING, 2015, 27 (02) : 392 - 405
  • [3] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    [J]. OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [4] Pinpointing the complexity of the interval min-max regret knapsack problem
    Deineko, Vladimir G.
    Woeginger, Gerhard J.
    [J]. DISCRETE OPTIMIZATION, 2010, 7 (04) : 191 - 196
  • [5] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [6] The interval min-max regret knapsack packing-delivery problem
    Wang, Shijin
    Cui, Wenli
    Chu, Feng
    Yu, Jianbo
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (18) : 5661 - 5677
  • [7] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192
  • [8] Min-max regret robust optimization approach on interval data uncertainty
    Assavapokee, T.
    Realff, M. J.
    Ammons, J. C.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) : 297 - 316
  • [9] Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty
    T. Assavapokee
    M. J. Realff
    J. C. Ammons
    [J]. Journal of Optimization Theory and Applications, 2008, 137 : 297 - 316
  • [10] Approximating the min-max (regret) selecting items problem
    Kasperski, Adam
    Kurpisz, Adam
    Zielinski, Pawel
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (1-2) : 23 - 29