Hybrid bounds for twisted L-functions

被引:72
|
作者
Blomer, Valentin [1 ]
Harcos, Gergely [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/CRELLE.2008.058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to derive bounds on the critical line Rs 1/2 for L- functions attached to twists f circle times chi of a primitive cusp form f of level N and a primitive character modulo q that break convexity simultaneously in the s and q aspects. If f has trivial nebentypus, it is shown that L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-4/5(vertical bar s vertical bar q)(1/2-1/40), where the implied constant depends only on epsilon > 0 and the archimedean parameter of f. To this end, two independent methods are employed to show L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-1/2 vertical bar S vertical bar(1/2)q(3/8) and L(g,s) << D-2/3 vertical bar S vertical bar(5/12) for any primitive cusp form g of level D and arbitrary nebentypus (not necessarily a twist f circle times chi of level D vertical bar Nq(2)).
引用
收藏
页码:53 / 79
页数:27
相关论文
共 50 条