On a problem in simultaneous Diophantine approximation: Schmidt's conjecture

被引:36
|
作者
Badziahin, Dzmitry [1 ]
Pollington, Andrew [2 ]
Velani, Sanju [1 ]
机构
[1] Univ York, York YO10 5DD, N Yorkshire, England
[2] Natl Sci Fdn, Arlington, VA 22230 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.4007/annals.2011.174.3.9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any i, j >= 0 with i + j = 1, let Bad(i, j) denote the set of points (x, y) is an element of R-2 for which max{parallel to qx parallel to(1/i), parallel to qy parallel to(1/j)} > c/q for all q is an element of N. Here c = c(x, y) is a positive constant. Our main result implies that any finite intersection of such sets has full dimension. This settles a conjecture of Wolfgang M. Schmidt in the theory of simultaneous Diophantine approximation.
引用
收藏
页码:1837 / 1883
页数:47
相关论文
共 50 条