Timber production assessment of a plantation forest: An integrated framework with field-based inventory, multi-source remote sensing data and forest management history

被引:21
|
作者
Gao, Tian [1 ,2 ]
Zhu, Jiaojun [1 ,2 ]
Deng, Songqiu [3 ]
Zheng, Xiao [1 ,2 ]
Zhang, Jinxin [1 ,2 ]
Shang, Guiduo [1 ,2 ,4 ]
Huang, Liyan [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Qingyuan Forest CERN, Shenyang 110016, Peoples R China
[3] Shinshu Univ, Inst Mt Sci, Nagano 3994598, Japan
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Larch plantation; Growing stock volume; Harvested timber; Age-class; Radar backscatter; ALOS PALSAR; Landsat-8; OLI; Random forest model; Logging regime; GROWING STOCK VOLUME; BAND ALOS PALSAR; SPATIAL-DISTRIBUTION; ABOVEGROUND BIOMASS; ECOSYSTEM SERVICES; BIOPHYSICAL PARAMETERS; BACKSCATTER INTENSITY; LARCH PLANTATIONS; NORTHEAST CHINA; TROPICAL FOREST;
D O I
10.1016/j.jag.2016.06.004
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Timber production is the purpose for managing plantation forests, and its spatial and quantitative information is critical for advising management strategies. Previous studies have focused on growing stock volume (GSV), which represents the current potential of timber production, yet few studies have investigated historical process-harvested timber. This resulted in a gap in a synthetical ecosystem service assessment of timber production. In this paper, we established a Management Process-based Timber production (MPT) framework to integrate the current GSV and the harvested timber derived from historical logging regimes, trying to synthetically assess timber production for a historical period. In the MPT framework, age-class and current GSV determine the times of historical thinning and the corresponding harvested timber, by using a "space-for-time" substitution. The total timber production can be estimated by the historical harvested timber in each thinning and the current GSV. To test this MPT framework, an empirical study on a larch plantation (LP) with area of 43,946 ha was conducted in North China for a period from 1962 to 2010. Field-based inventory data was integrated with ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) and Landsat-8 OLI (Operational Land Imager) data for estimating the age-class and current GSV of LP. The random forest model with PALSAR backscatter intensity channels and OLI bands as input predictive variables yielded an accuracy of 67.9% with a Kappa coefficient of 0.59 for age-class classification. The regression model using PALSAR data produced a root mean square error (RMSE) of 36.5 m(3) ha(-1). The total timber production of LP was estimated to be 7.27 x 10(6) m(3), with 4.87 x 10(6) m(3) in current GSV and 2.40 x 10(6) m(3) in harvested timber through historical thinning. The historical process-harvested timber accounts to 33.0% of the total timber production, which component has been neglected in the assessments for current status of plantation forests. Synthetically considering the RMSE for predictive GSV and misclassification of age-class, the error in timber production were supposed to range from -55.2 to 56.3 m(3) ha(-1). The MPT framework can be used to assess timber production of other tree species at a larger spatial scale, providing crucial information for a better understanding of forest ecosystem service. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 50 条
  • [1] Integrating Multi-Source Remote Sensing Data for Forest Fire Risk Assessment
    Liu, Xinzhu
    Zheng, Change
    Wang, Guangyu
    Zhao, Fengjun
    Tian, Ye
    Li, Hongchen
    FORESTS, 2024, 15 (11):
  • [2] Inversion of Forest Biomass Based on Multi-Source Remote Sensing Images
    Zhang, Danhua
    Ni, Hui
    SENSORS, 2023, 23 (23)
  • [3] Framework for near real-time forest inventory using multi source remote sensing data
    Coops, Nicholas C.
    Tompalski, Piotr
    Goodbody, Tristan R. H.
    Achim, Alexis
    Mulverhill, Christopher
    FORESTRY, 2022, : 1 - 19
  • [4] Estimating forest data for analyses of forest production and utilization possibilities at local level by means of multi-source National Forest Inventory
    Makela, Helena
    Hirvela, Hannu
    Nuutinen, Tuula
    Karkkainen, Leena
    FOREST ECOLOGY AND MANAGEMENT, 2011, 262 (08) : 1345 - 1359
  • [5] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [6] Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm
    Wang, Dejun
    Xing, Yanqiu
    Fu, Anmin
    Tang, Jie
    Chang, Xiaoqing
    Yang, Hong
    Yang, Shuhang
    Li, Yuanxin
    FORESTS, 2025, 16 (02):
  • [7] PRECISE CLASSIFICATION OF FOREST SPECIES BASED ON MULTI-SOURCE REMOTE-SENSING IMAGES
    Zhang, R.
    Li, Q.
    Duan, K. F.
    You, S. C.
    Zhang, T.
    Liu, K.
    Gan, Y. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2020, 18 (02): : 3659 - 3681
  • [8] A framework for montane forest canopy height estimation via integrating deep learning and multi-source remote sensing data
    Luo, Hongbin
    Ou, Guanglong
    Yue, Cairong
    Zhu, Bodong
    Wu, Yong
    Zhang, Xiaoli
    Lu, Chi
    Tang, Jing
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 138
  • [9] Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing
    Zhao, Yixin
    Huang, Yajun
    Sun, Xupeng
    Dong, Guanyu
    Li, Yuanqing
    Ma, Mingguo
    REMOTE SENSING, 2023, 15 (09)
  • [10] The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data
    Jin, Shichao
    Su, Yanjun
    Gao, Shang
    Hu, Tianyu
    Liu, Jin
    Guo, Qinghua
    REMOTE SENSING, 2018, 10 (08)