Monte Carlo volume rendering

被引:22
|
作者
Cséfalvi, B [1 ]
Szirmay-Kalos, L [1 ]
机构
[1] Tech Univ Budapest, Dept Control Engn & Informat Technol, H-1521 Budapest, Hungary
关键词
X-ray volume rendering; Monte Carlo integration; importance sampling; progressive refinement;
D O I
10.1109/VISUAL.2003.1250406
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper a novel volume-rendering technique based on Monte Carlo integration is presented. As a result of a preprocessing, a point cloud of random samples is generated using a normalized continuous reconstruction of the volume as a probability density function. This point cloud is projected onto the image plane, and to each pixel an intensity value is assigned which is proportional to the number of samples projected onto the corresponding pixel area. In such a way a simulated X-ray image of the volume can be obtained. Theoretically, for a fixed image resolution, there exists an M number of samples such that the average standard deviation of the estimated pixel intensities is under the level of quantization error regardless of the number of voxels. Therefore Monte Carlo Volume Rendering (MCVR) is mainly proposed to efficiently visualize large volume data sets. Furthermore, network applications are also supported, since the trade-off between image quality and interactivity can be adapted to the bandwidth of the client/server connection by using progressive refinement.
引用
下载
收藏
页码:449 / 456
页数:8
相关论文
共 50 条
  • [1] Combining estimators for Monte Carlo volume rendering with shading
    Li, Xiaoliang
    Yang, Jie
    Zhu, Yuemin
    VISUAL COMPUTER, 2006, 22 (07): : 468 - 477
  • [2] Combining estimators for Monte Carlo volume rendering with shading
    Xiaoliang Li
    Jie Yang
    Yuemin Zhu
    The Visual Computer, 2006, 22 : 468 - 477
  • [3] Interactive transfer function control for Monte Carlo volume rendering
    Csébfalvi, B
    IEEE SYMPOSIUM ON VOLUME VISUALIZATION AND GRAPHICS 2004, PROCEEDINGS, 2004, : 33 - 38
  • [4] Parallel Irradiance Caching for Interactive Monte-Carlo Direct Volume Rendering
    Khlebnikov, Rostislav
    Voglreiter, Philip
    Steinberger, Markus
    Kainz, Bernhard
    Schmalstieg, Dieter
    COMPUTER GRAPHICS FORUM, 2014, 33 (03) : 61 - 70
  • [5] Analysis of Sample Correlations for Monte Carlo Rendering
    Singh, Gurprit
    Oztireli, Cengiz
    Ahmed, Abdalla G. M.
    Coeurjolly, David
    Subr, Kartic
    Deussen, Oliver
    Ostromoukhov, Victor
    Ramamoorthi, Ravi
    Jarosz, Wojciech
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 473 - 491
  • [6] Bayesian Collaborative Denoising for Monte Carlo Rendering
    Boughida, Malik
    Boubekeur, Tamy
    COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 137 - 153
  • [7] Antithetic Sampling for Monte Carlo Differentiable Rendering
    Zhang, Cheng
    Dong, Zhao
    Doggett, Michael
    Zhao, Shuang
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [8] Efficient Monte Carlo rendering with realistic lenses
    Hanika, Johannes
    Dachsbacher, Carsten
    COMPUTER GRAPHICS FORUM, 2014, 33 (02) : 323 - 332
  • [9] Orthogonal Array Sampling for Monte Carlo Rendering
    Jarosz, Wojciech
    Enayet, Afnan
    Kensler, Andrew
    Kilpatrick, Charlie
    Christensen, Per
    COMPUTER GRAPHICS FORUM, 2019, 38 (04) : 135 - 147
  • [10] Perceptual Error Optimization for Monte Carlo Rendering
    Chizhov, Vassillen
    Georgiev, Iliyan
    Myszkowski, Karol
    Singh, Gurprit
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (03):