Crystal growth engineering for high efficiency perovskite solar cells

被引:84
|
作者
Park, Nam-Gyu [1 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Chem Engn, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
ORGANOLEAD HALIDE PEROVSKITE; CHEMICAL-VAPOR-DEPOSITION; CHARGE-CARRIER DYNAMICS; LEAD IODIDE PEROVSKITE; SEQUENTIAL DEPOSITION; SINGLE-CRYSTALS; BASE ADDUCT; THIN-FILMS; CH3NH3PBI3; PERFORMANCE;
D O I
10.1039/c6ce00813e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The perovskite solar cell is based on organicinorganic lead halides such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)(2)PbI3 as light harvesters. Since the first report on a longterm, durable, 9.7% efficient solidstate perovskite solar cell in 2012, the perovskite solar cell has received great attention because of facile processing and superb photovoltaic performance. As a result, a power conversion efficiency exceeding 22% was certified in 2016. To achieve a high efficiency perovskite solar cell, understanding the crystal structure and optoelectronic properties of organicinorganic lead halide perovskites are of importance. Growth of perovskite on substrate without traps and grain boundaries is equally important for attaining high efficiency. In this article, the emergence of the perovskite solar cell, the structural and optoelectronic characteristics of perovskite materials and the methodologies of perovskite crystal growth both from solution and on a substrate are reviewed.
引用
收藏
页码:5977 / 5985
页数:9
相关论文
共 50 条
  • [1] Additive engineering induced perovskite crystal growth for high performance perovskite solar cells
    Jin, Shao
    Wei, Yuelin
    Yang, Xiaomin
    Luo, Dan
    Fang, Yu
    Zhao, Yuezhu
    Guo, Qiyao
    Huang, Yunfang
    Fan, Leqing
    Wu, Jihuai
    ORGANIC ELECTRONICS, 2018, 63 : 207 - 215
  • [2] Interface engineering for high-efficiency perovskite solar cells
    Pan, Han
    Shao, Hui
    Zhang, Xiao Li
    Shen, Yan
    Wang, Mingkui
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (13)
  • [3] High Efficiency Perovskite Solar Cells: Materials and Devices Engineering
    Nam-Gyu Park
    Transactions on Electrical and Electronic Materials, 2020, 21 : 1 - 15
  • [4] High Efficiency Perovskite Solar Cells: Materials and Devices Engineering
    Park, Nam-Gyu
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2020, 21 (01) : 1 - 15
  • [5] Defect engineering on all-inorganic perovskite solar cells for high efficiency
    Bingcheng Yu
    Chuantian Zuo
    Jiangjian Shi
    Qingbo Meng
    Liming Ding
    Journal of Semiconductors, 2021, (05) : 11 - 13
  • [6] Defect engineering on all-inorganic perovskite solar cells for high efficiency
    Yu, Bingcheng
    Zuo, Chuantian
    Shi, Jiangjian
    Meng, Qingbo
    Ding, Liming
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (05)
  • [7] Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells
    Zhao, Yixin
    Zhu, Kai
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (23): : 4175 - 4186
  • [8] Defect engineering on all-inorganic perovskite solar cells for high efficiency
    Bingcheng Yu
    Chuantian Zuo
    Jiangjian Shi
    Qingbo Meng
    Liming Ding
    Journal of Semiconductors, 2021, 42 (05) : 11 - 13
  • [9] Ionic liquids engineering for high-efficiency and stable perovskite solar cells
    Deng, Xiaoyu
    Xie, Lisha
    Wang, Shurong
    Li, Chengbo
    Wang, Aili
    Yuan, Yuan
    Cao, Zhiyuan
    Li, Tingshuai
    Ding, Liming
    Hao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2020, 398 (398)
  • [10] Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells
    Alharbi, Essa A.
    Krishna, Anurag
    Baumeler, Thomas P.
    Dankl, Mathias
    Fish, George C.
    Eickemeyer, Felix
    Ouellette, Olivier
    Ahlawat, Paramvir
    Skorjanc, Viktor
    John, Elsa
    Yang, Bowen
    Pfeifer, Lukas
    Avalos, Claudia Esther
    Pan, Linfeng
    Mensi, Mounir
    Schouwink, Pascal Alexander
    Moser, Jacques-E
    Hagfeldt, Anders
    Rothlisberger, Ursula
    Zakeeruddin, Shaik M.
    Gratzel, Michael
    ACS ENERGY LETTERS, 2021, 6 (10) : 3650 - 3660