Lie symmetries of geodesic equations and projective collineations

被引:19
|
作者
Tsamparlis, Michael [1 ]
Paliathanasis, Andronikos [1 ]
机构
[1] Univ Athens, Dept Phys, Sect Astron Astrophys Mech, Athens 15783, Greece
关键词
Geodesics; General relativity theory; Classical mechanics; Collineations; Riemannian space; Autoparallels; Lie symmetries; Projective collineations; DIFFERENTIAL-EQUATIONS; SPACES;
D O I
10.1007/s11071-010-9710-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We prove a theorem which relates the Lie symmetries of the geodesic equations in a Riemannian space with the collineations of the metric. We apply the results to Einstein spaces and spaces of constant curvature. Finally with examples we show the use of the results.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [1] Lie symmetries of geodesic equations and projective collineations
    Michael Tsamparlis
    Andronikos Paliathanasis
    Nonlinear Dynamics, 2010, 62 : 203 - 214
  • [2] Projective Collineations of Decomposable Spacetimes Generated by the Lie Point Symmetries of Geodesic Equations
    Paliathanasis, Andronikos
    SYMMETRY-BASEL, 2021, 13 (06):
  • [3] Lie and Noether symmetries of geodesic equations and collineations
    Tsamparlis, Michael
    Paliathanasis, Andronikos
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (12) : 2957 - 2980
  • [4] Lie and Noether symmetries of geodesic equations and collineations
    Michael Tsamparlis
    Andronikos Paliathanasis
    General Relativity and Gravitation, 2010, 42 : 2957 - 2980
  • [5] NOTE ON EQUATIONS OF PROJECTIVE COLLINEATIONS
    KATZIN, GH
    LEVINE, J
    TENSOR, 1968, 19 (02): : 162 - &
  • [6] Lie point symmetries of the geodesic equations of the Godel's metric
    Al-Kindi, Fatma
    Ziad, Muhammad
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1341 - 1346
  • [7] Lie symmetries of the canonical geodesic equations for six-dimensional nilpotent lie groups
    Ghanam, Ryad
    Thompson, Gerard
    COGENT MATHEMATICS & STATISTICS, 2020, 7
  • [8] Geodesic models generated by Lie symmetries
    G. Z. Abebe
    S. D. Maharaj
    K. S. Govinder
    General Relativity and Gravitation, 2014, 46
  • [9] Geodesic models generated by Lie symmetries
    Abebe, G. Z.
    Maharaj, S. D.
    Govinder, K. S.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (01) : 1 - 18
  • [10] PROJECTIVE COLLINEATIONS
    STEVENSO.FW
    ARCHIV DER MATHEMATIK, 1972, 23 (04) : 446 - &