Simulating cropping sequences using earth observation data

被引:7
|
作者
Sharp, Ryan T. [1 ]
Henrys, Peter A. [2 ]
Jarvis, Susan G. [2 ]
Whitmore, Andrew P. [1 ]
Milne, Alice E. [1 ]
Coleman, Kevin [1 ]
Mohankumar, Sajeev Erangu Purath [1 ]
Metcalfe, Helen [1 ]
机构
[1] Rothamsted Research, Sustainable Agr Sci, Harpenden, Herts, England
[2] Lancaster Environm Ctr, UK Ctr Ecol & Hydrol, Lancaster, England
基金
英国生物技术与生命科学研究理事会;
关键词
Crop rotations; Land Cover (R) plus: Crops; Modelling; Crop management; Baseline scenario modelling; LAND;
D O I
10.1016/j.compag.2021.106330
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Model-based studies of agricultural systems often rely on the analyst defining realistic crop sequences. This usually involves relying on a few 'typical rotations' that are used in baseline scenarios. These may not account for the variation in farming practices across a region, however, as farmer decision making about which crops to grow is influenced by a combination of economic, environmental and social drivers. We describe and test an approach for generating random realisations of plausible crop sequences based on observed data as quantified by earth observation. Our approach combines crop classification data with a series of crop management rules that reflect the advice followed by farmers (e.g. to reduce the chance of crop-pests and disease). We adapt the approach to generate crop sequences specific to regions and soil type. This demonstrates how the method can be adapted to generate crop sequences typical of a study area of interest.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Flood Modeling and Prediction Using Earth Observation Data
    Schumann, Guy
    Giustarini, Laura
    Tarpanelli, Angelica
    Jarihani, Ben
    Martinis, Sandro
    SURVEYS IN GEOPHYSICS, 2023, 44 (05) : 1553 - 1578
  • [2] Flood Modeling and Prediction Using Earth Observation Data
    Guy Schumann
    Laura Giustarini
    Angelica Tarpanelli
    Ben Jarihani
    Sandro Martinis
    Surveys in Geophysics, 2023, 44 : 1553 - 1578
  • [3] Scalable Artificial Intelligence for Earth Observation Data Using Hopsworks
    Hagos, Desta Haileselassie
    Kakantousis, Theofilos
    Sheikholeslami, Sina
    Wang, Tianze
    Vlassov, Vladimir
    Payberah, Amir Hossein
    Meister, Moritz
    Andersson, Robin
    Dowling, Jim
    REMOTE SENSING, 2022, 14 (08)
  • [4] Accessing earth observation data using JPEG2000
    Carvalho, Helder
    Serrao, Carlos
    Serra, Antonio
    Dias, Miguel
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS, 2007, : 135 - 140
  • [5] Earth observation using radar data: an overview of applications and challenges
    Palmann, C.
    Mavromatis, S.
    Hernandez, M.
    Sequeira, J.
    Brisco, B.
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2008, 1 (02) : 171 - 195
  • [6] Using earth observation data in spatial planning: The Geoland project
    Evans, Neil
    EUROPEAN PLANNING STUDIES, 2007, 15 (07) : 985 - 989
  • [7] Bamboo Mapping Using Earth Observation Data: A Systematic Review
    Muna Tamang
    Subrata Nandy
    Ritika Srinet
    Ashesh Kumar Das
    Hitendra Padalia
    Journal of the Indian Society of Remote Sensing, 2022, 50 : 2055 - 2072
  • [8] EARTH OBSERVATION DATA POLICY
    GIBSON, R
    SPACE POLICY, 1993, 9 (04) : 272 - 272
  • [9] Archives for Earth observation data
    Harris, R
    Olby, N
    SPACE POLICY, 2000, 16 (03) : 223 - 227
  • [10] Bamboo Mapping Using Earth Observation Data: A Systematic Review
    Tamang, Muna
    Nandy, Subrata
    Srinet, Ritika
    Das, Ashesh Kumar
    Padalia, Hitendra
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (11) : 2055 - 2072