Optimization Design of Lattice Structures in Internal Cooling Channel with Variable Aspect Ratio of Gas Turbine Blade

被引:18
|
作者
Xu, Liang [1 ]
Ruan, Qicheng [1 ]
Shen, Qingyun [1 ]
Xi, Lei [1 ]
Gao, Jianmin [1 ]
Li, Yunlong [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Mfg Syst Engn, Xian 710049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
lattice structure; internal cooling channel; heat transfer; mechanical performances; integral optimization model; HEAT-TRANSFER CHARACTERISTICS; FLUID-FLOW; SANDWICH PANEL; TRANSFER ENHANCEMENT; METALLIC LATTICE; TRUSS CORE; X-LATTICE; PIN FINS; PERFORMANCE; TOPOLOGY;
D O I
10.3390/en14133954
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Traditional cooling structures in gas turbines greatly improve the high temperature resistance of turbine blades; however, few cooling structures concern both heat transfer and mechanical performances. A lattice structure (LS) can solve this issue because of its advantages of being lightweight and having high porosity and strength. Although the topology of LS is complex, it can be manufactured with metal 3D printing technology in the future. In this study, an integral optimization model concerning both heat transfer and mechanical performances was presented to design the LS cooling channel with a variable aspect ratio in gas turbine blades. Firstly, some internal cooling channels with the thin walls were built up and a simple raw of five LS cores was taken as an insert or a turbulator in these cooling channels. Secondly, relations between geometric variables (height (H), diameter (D) and inclination angle(omega)) and objectives/functions of this research, including the first-order natural frequency (freq1), equivalent elastic modulus (E), relative density ((rho) over bar) and Nusselt number (Nu), were established for a pyramid-type lattice structure (PLS) and Kagome-type lattice structure (KLS). Finally, the ISIGHT platform was introduced to construct the frame of the integral optimization model. Two selected optimization problems (Op-I and Op-II) were solved based on the third-order response model with an accuracy of more than 0.97, and optimization results were analyzed. The results showed that the change of Nu and freq1 had the highest overall sensitivity Op-I and Op-II, respectively, and the change of D and H had the highest single sensitivity for Nu and freq1, respectively. Compared to the initial LS, the LS of Op-I increased Nu and E by 24.1% and 29.8%, respectively, and decreased (rho) over bar by 71%; the LS of Op-II increased Nu and E by 30.8% and 45.2%, respectively, and slightly increased (rho) over bar; the LS of both Op-I and Op-II decreased freq1 by 27.9% and 19.3%, respectively. These results suggested that the heat transfer, load bearing and lightweight performances of the LS were greatly improved by the optimization model (except for the lightweight performance for the optimal LS of Op-II, which became slightly worse), while it failed to improve vibration performance of the optimal LS.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Optimization Design of Lattice Structures in Internal Cooling Channel of Turbine Blade
    Xu, Liang
    Shen, Qingyun
    Ruan, Qicheng
    Xi, Lei
    Gao, Jianmin
    Li, Yunlong
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [2] Effect of Aspect Ratio on Heat Transfer of Triangular Internal Cooling Channel of Gas Turbine Blade
    Choi, Seok Min
    Choi, Seungyeong
    Park, Hee Seung
    Cho, Hyung Hee
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2021, 45 (03) : 135 - 143
  • [3] Curve optimization design of a turbine blade withlow aspect ratio
    Han, Jun
    Wen, Fengbo
    Zhao, Guangbo
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2014, 54 (01): : 102 - 108
  • [4] Heat transfer enhancement in gas turbine blade trailing-edge internal cooling channel with high aspect ratio twisted fins arranged on sidewalls
    Wang, Boyuan
    Ji, Shoutong
    Huadan, Cairang
    Zhao, Yue
    Liu, Yanjun
    Chen, Shiyang
    Li, Ping
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 210
  • [5] HEAT TRANSFER ENHANCEMENT FOR GAS TURBINE BLADE INTERNAL COOLING WITH LATTICE STRUCTURED RIB
    Kim, Sangmin
    Park, Yong Gap
    Yoon, Sang Youl
    Ha, Man Yeong
    Min, June Kee
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 8, 2024,
  • [6] DESIGN AND OPTIMIZATION OF THE INTERNAL COOLING CHANNELS OF A HP TURBINE BLADE - PART II, OPTIMIZATION
    Verstraete, Tom
    Amaral, Sergio
    Van den Braembussche, Rene
    Arts, Tony
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 4, PTS A AND B, 2008, : 977 - 987
  • [7] Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade
    Ryszard Szwaba
    Piotr Kaczynski
    Piotr Doerffer
    Janusz Telega
    Journal of Thermal Science, 2016, 25 : 336 - 341
  • [8] Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade
    Ryszard Szwaba
    Piotr Kaczynski
    Piotr Doerffer
    Janusz Telega
    JournalofThermalScience, 2016, 25 (04) : 336 - 341
  • [9] Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade
    Szwaba, Ryszard
    Kaczynski, Piotr
    Doerffer, Piotr
    Telega, Janusz
    JOURNAL OF THERMAL SCIENCE, 2016, 25 (04) : 336 - 341
  • [10] EXPLORING THE EFFECTS OF PIN-FINS IN A GAS TURBINE BLADE INTERNAL COOLING CHANNEL
    Nourin, Farah Nazifa
    Amano, Ryoichi S.
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 7B, 2023,