Task representations in neural networks trained to perform many cognitive tasks

被引:230
|
作者
Yang, Guangyu Robert [1 ,2 ]
Joglekar, Madhura R. [1 ,6 ]
Song, H. Francis [1 ,7 ]
Newsome, William T. [3 ,4 ]
Wang, Xiao-Jing [1 ,5 ]
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
[2] Columbia Univ, Mortimer B Zuckerman Mind Brain Behav Inst, Dept Neurosci, New York, NY USA
[3] Stanford Univ, Dept Neurobiol, Stanford, CA 94305 USA
[4] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[5] Shanghai Res Ctr Brain Sci & Brain Inspired Intel, Shanghai, Peoples R China
[6] NYU, Courant Inst Math Sci, New York, NY USA
[7] DeepMind, London, England
基金
美国国家科学基金会;
关键词
PREFRONTAL CORTEX; WORKING-MEMORY; SELECTIVITY; MECHANISMS; DYNAMICS; NEURONS; MODELS; WINDOW;
D O I
10.1038/s41593-018-0310-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The brain has the ability to flexibly perform many tasks, but the underlying mechanism cannot be elucidated in traditional experimental and modeling studies designed for one task at a time. Here, we trained single network models to perform 20 cognitive tasks that depend on working memory, decision making, categorization, and inhibitory control. We found that after training, recurrent units can develop into clusters that are functionally specialized for different cognitive processes, and we introduce a simple yet effective measure to quantify relationships between single-unit neural representations of tasks. Learning often gives rise to compositionality of task representations, a critical feature for cognitive flexibility, whereby one task can be performed by recombining instructions for other tasks. Finally, networks developed mixed task selectivity similar to recorded prefrontal neurons after learning multiple tasks sequentially with a continual-learning technique. This work provides a computational platform to investigate neural representations of many cognitive tasks.
引用
收藏
页码:297 / +
页数:14
相关论文
共 50 条