Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal

被引:202
|
作者
Rakich, PT [1 ]
Dahlem, MS
Tandon, S
Ibanescu, M
Soljacic, M
Petrich, GS
Joannopoulos, JD
Kolodziejski, LA
Ippen, EP
机构
[1] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1568
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diffraction, a fundamental process in wave physics, leads to spreading of the optical beams as they propagate. However, new photonic crystal ( PhC) meta-materials can be nano-engineered to generate extreme anisotropy, resulting in apparent propagation of light without diffraction. This surprising phenomenon, called supercollimation, effectively freezes the spatial width of a light beam inside a PhC, observed over a few isotropic diffraction-lengths(1-6). However, using such experiments to predict the behaviour for longer propagation lengths is difficult, as a tiny error in a measured width can extrapolate to order unity uncertainty in the width at distances over hundreds of diffraction-lengths. Here, supercollimation is demonstrated in a macroscopic PhC system over centimetre-scale distances, retaining spatial width confinement without the need for waveguides or nonlinearities. Through quantitative studies of the beam evolution in a two-dimensional PhC, we find that supercollimation possesses unexpected but inherent robustness with respect to short-scale disorder such as fabrication roughness, enabling supercollimation over 600 isotropic diffraction-lengths. The effects of disorder are identified through experiments and understood through rigorous simulations. In addition, a supercollimation steering capability is proposed.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条
  • [1] Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal
    Peter T. Rakich
    Marcus S. Dahlem
    Sheila Tandon
    Mihai Ibanescu
    Marin Soljačić
    Gale S. Petrich
    John D. Joannopoulos
    Leslie A. Kolodziejski
    Erich P. Ippen
    Nature Materials, 2006, 5 : 93 - 96
  • [2] Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces
    Qiao, Hongzhen
    Yang, Jianjun
    Wang, Fei
    Yang, Yang
    Sun, Julong
    OPTICS EXPRESS, 2015, 23 (20): : 26617 - 26627
  • [3] Fabrication of Large-Area Two-Dimensional Colloidal Crystals
    Zhang, Jian-Tao
    Wang, Luling
    Lamont, Daniel N.
    Velankar, Sachin S.
    Asher, Sanford A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) : 6117 - 6120
  • [4] Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles
    Zhang, Xinping
    Sun, Baoquan
    Guo, Hongcang
    Tetreault, Nicolas
    Giessen, Harald
    Friend, Richard H.
    APPLIED PHYSICS LETTERS, 2007, 90 (13)
  • [5] Fabrication of large-area two-dimensional photonic crystals using interference lithography and direct writing of defects
    Baroni, Pierre-Yves
    Scharf, Toralf
    Herzig, Hans Peter
    PHOTONIC CRYSTAL MATERIALS AND DEVICES III (I.E. V), 2006, 6182
  • [6] Large-area two-dimensional mesoscale quasi-crystals
    Wang, X
    Ng, CY
    Tam, WY
    Chan, CT
    Sheng, P
    ADVANCED MATERIALS, 2003, 15 (18) : 1526 - +
  • [7] Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography
    Prodan, L
    Euser, TG
    van Wolferen, HAGM
    Bostan, C
    de Ridder, RM
    Beigang, R
    Boller, KJ
    Kuipers, L
    NANOTECHNOLOGY, 2004, 15 (05) : 639 - 642
  • [8] A study of the origin of supercollimation in two-dimensional square-lattice photonic crystals
    Di, Yizhou
    Jiang, Xunya
    JOURNAL OF OPTICS, 2021, 23 (08)
  • [9] Wavelength scale terahertz two-dimensional photonic crystal waveguides
    Lin, CC
    Chen, CH
    Schneider, GJ
    Yao, P
    Shi, SY
    Sharkawy, A
    Prather, DW
    OPTICS EXPRESS, 2004, 12 (23): : 5723 - 5728
  • [10] Two-dimensional metallodielectric photonic crystal with a large band gap
    Jin, Chongjun
    Cheng, Bingying
    Man, Baoyuan
    Zhang, Daozhong
    Ban, Shouzheng
    Sun, Bo
    Li, Lieming
    Zhang, Xiangdong
    Zhang, Zhaoqing
    Applied Physics Letters, 75 (09):